Local Spectral Radius Formulas on Compact Lie Groups

被引:0
|
作者
Andersen, Nils Byrial [1 ]
de Jeu, Marcel [2 ]
机构
[1] Alssundgymnasiet Sonderborg, DK-6400 Sonderborg, Denmark
[2] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands
关键词
Compact Lie group; universal enveloping algebra; local spectrum; local spectral radius; local spectral radius formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the local spectrum of a central element of the complexified universal enveloping algebra of a compact connected Lie group at a smooth function as an element of L-P(G). Based on this result we establish a corresponding local spectral radius formula.
引用
收藏
页码:223 / 230
页数:8
相关论文
共 50 条
  • [41] On Bernstein polynomials for compact Lie groups
    Boyallian, C
    JOURNAL OF ALGEBRA, 1998, 210 (01) : 271 - 290
  • [42] On deformations of Fn in compact Lie groups
    Gelander, Tsachik
    ISRAEL JOURNAL OF MATHEMATICS, 2008, 167 (01) : 15 - 26
  • [43] Nonabelian Cohomology of Compact Lie Groups
    An, Jinpeng
    Liu, Ming
    Wang, Zhengdong
    JOURNAL OF LIE THEORY, 2009, 19 (02) : 231 - 236
  • [44] Continuity of π-perfection for compact Lie groups
    Fausk, H
    Oliver, B
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 : 135 - 140
  • [45] On the Poisson relation for compact Lie groups
    Sutton, Craig
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 57 (04) : 537 - 589
  • [46] Loops as sections in compact Lie groups
    Á. Figula
    K. Strambach
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2017, 87 : 61 - 68
  • [47] Maximal Subgroups of Compact Lie Groups
    Antoneli, Fernando
    Forger, Michael
    Gaviria, Paola
    JOURNAL OF LIE THEORY, 2012, 22 (04) : 949 - 1024
  • [48] Loops as sections in compact Lie groups
    Figula, A.
    Strambach, K.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2017, 87 (01): : 61 - 68
  • [49] Polars of disconnected compact Lie groups
    Tanaka, Makiko Sumi
    Tasaki, Hiroyuki
    DIFFERENTIAL GEOMETRY AND GLOBAL ANALYSIS: IN HONOR OF TADASHI NAGANO, 2022, 777 : 211 - 225
  • [50] On the Poisson relation for compact Lie groups
    Craig Sutton
    Annals of Global Analysis and Geometry, 2020, 57 : 537 - 589