On the Conjecture for Certain Laplacian Integral Spectrum of Graphs

被引:12
|
作者
Das, Kinkar Ch. [1 ]
Lee, Sang-Gu [1 ]
Cheon, Gi-Sang [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
关键词
graph; Laplacian matrix; largest eigenvalue; second smallest eigenvalue; Laplacian spectrum; diameter; EIGENVALUES; ACHIEVE;
D O I
10.1002/jgt.20412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph of order n with Laplacian spectrum {lambda(n), lambda(n-1), ... , lambda(1)} where 0=lambda(n) <= lambda(n-1) <= ... <= lambda(1). If there exists a graph whose Laplacian spectrum is S= {0, 1, ... , n-1}, then we say that S is Laplacian realizable. In [6], Fallat et al. posed a conjecture that S is not Laplacian realizable for any n >= 2 and showed that the conjecture holds for n <= 11, n is prime, or n = 2, 3 (mod 4). In this article, we have proved that (i) if G is connected and lambda(1) = n-1 then G has diameter either 2 or 3, and (ii) if lambda(1) = n-1 and lambda(n-1)= 1 then both G and (G) over bar, the complement of G, have diameter 3. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 63: 106-113, 2010
引用
收藏
页码:106 / 113
页数:8
相关论文
共 50 条
  • [11] Spectral integral variations and Laplacian integral graphs
    Wang, Yi
    Fan, Yi-Zheng
    ADVANCES IN MATRIX THEORY AND APPLICATIONS, 2006, : 300 - 303
  • [12] Energy of Certain Classes of Graphs Determined by Their Laplacian Degree Product Adjacency Spectrum
    Khurshid, Asim
    Salman, Muhammad
    Rehman, Masood Ur
    Rahim, Mohammad Tariq
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [13] A conjecture on the diameter and signless Laplacian index of graphs
    Liu, Huiqing
    Lu, Mei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 450 : 158 - 174
  • [14] On Laplacian eigenvalues of graphs and Brouwer's conjecture
    Ganie, Hilal A.
    Pirzada, S.
    Rather, Bilal A.
    Ul Shaban, Rezwan
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2021, 36 (01) : 13 - 21
  • [15] LAPLACIAN INTEGRAL SUBCUBIC SIGNED GRAPHS
    Wang, Dijian
    Hou, Yaoping
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 163 - 176
  • [16] DEGREE MAXIMAL GRAPHS ARE LAPLACIAN INTEGRAL
    MERRIS, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 199 : 381 - 389
  • [17] Laplacian integral graphs in S(a, b)
    de Lima, Leonardo Silva
    de Abreu, Nair Maria Maia
    Oliveira, Carla Silva
    Alvarez de Freitas, Maria Aguieiras
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 136 - 145
  • [18] Graphs with integral spectrum
    Ahmadi, Omran
    Alon, Noga
    Blake, Ian F.
    Shparlinski, Igor E.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) : 547 - 552
  • [19] Laplacian energy and first Zagreb index of Laplacian integral graphs
    Hameed, Abdul
    Khan, Zia Ullah
    Tyaglov, Mikhail
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (02): : 133 - 160
  • [20] Integral Laplacian graphs with a unique repeated Laplacian eigenvalue, I
    Hameed, Abdul
    Tyaglov, Mikhail
    SPECIAL MATRICES, 2023, 11 (01):