On coherent-state representations of quantum mechanics: Wave mechanics in phase space

被引:46
|
作者
Moller, KB [1 ]
Jorgensen, TG [1 ]
TorresVega, G [1 ]
机构
[1] INST POLITECN NACL, CTR INVEST & ESTUDIOS AVANZADOS, DEPT FIS, MEXICO CITY 07000, DF, MEXICO
来源
JOURNAL OF CHEMICAL PHYSICS | 1997年 / 106卷 / 17期
关键词
D O I
10.1063/1.473684
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article we argue that the state-vector phase-space representation recently proposed by Torres-Vega and co-workers [introduced in J. Chem. Phys. 98, 3103 (1993)] coincides with the totality of coherent-state representations for the Heisenberg-Weyl group. This fact leads to ambiguities when one wants to solve the stationary Schrodinger equation in phase space and we devise two schemes for the removal of these ambiguities. The physical interpretation of the phase-space wave functions is discussed and a procedure for computing expectation values as integrals over phase space is presented. Our formal points are illustrated by two examples. (C) 1997 American Institute of Physics.
引用
收藏
页码:7228 / 7240
页数:13
相关论文
共 50 条
  • [41] Tripartite nonlinear entangled state representations in quantum mechanics
    Fan Hong-Yi
    Li Chao
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 46 (01) : 46 - 50
  • [42] The sampling theorem and coherent state systems in quantum mechanics
    Arvind
    Chaturvedi, S.
    Mukunda, N.
    Simon, R.
    PHYSICA SCRIPTA, 2006, 74 (02) : 168 - 179
  • [44] Quantum energy teleportation in phase space quantum mechanics
    Sanchez-Cordova, Mar
    Berra-Montiel, Jasel
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (12):
  • [45] Characterization of a π-phase shift quantum gate for coherent-state qubits
    Blandino, Remi
    Ferreyrol, Franck
    Barbieri, Marco
    Grangier, Philippe
    Tualle-Brouri, Rosa
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [46] The continuity equation in the phase space quantum mechanics
    Tosiek, Jaromir
    Campobasso, Luca
    ANNALS OF PHYSICS, 2024, 460
  • [47] Theory and Examples of Quantum Mechanics on Phase Space
    Schroeck, Franklin E., Jr.
    32ND INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (GROUP32), 2019, 1194
  • [48] Quantum mechanics in phase space:: Squeezed states
    Zúñiga-Segundo, A
    López-Bonilla, JL
    CHINESE JOURNAL OF PHYSICS, 2001, 39 (06) : 565 - 576
  • [49] The Phase Space Model of Nonrelativistic Quantum Mechanics
    Tosiek, Jaromir
    Przanowski, Maciej
    ENTROPY, 2021, 23 (05)
  • [50] On the phase-space picture of quantum mechanics
    Campos, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (19): : 5305 - 5317