共 50 条
On the generalized Chern conjecture for hypersurfaces with constant mean curvature in a sphere
被引:5
|作者:
Lei, Li
[1
]
Xu, Hongwei
[1
]
Xu, Zhiyuan
[2
]
机构:
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
[2] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Peoples R China
基金:
中国国家自然科学基金;
中国博士后科学基金;
关键词:
generalized Chern conjecture;
hypersurfaces with constant mean curvature;
rigidity theorem;
scalar curvature;
the second fundamental form;
D O I:
10.1007/s11425-020-1841-y
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let M be a compact hypersurface with constant mean curvature in Sn+1. Denote by H and S the mean curvature and the squared norm of the second fundamental form of M, respectively. We verify that there exists a positive constant gamma(n) depending only on n such that if jHj 6 gamma(n) and fi(n;H) 6 S 6 fi(n;H) + n 18, then S beta (n;H) and M is a Clifford torus. Here, fi (n;H) = n + n3 2(n H2 + n(n 2(n v n2H4 + 4(n 1)H2
引用
收藏
页码:1493 / 1504
页数:12
相关论文