ROSA: A High-cadence, Synchronized Multi-camera Solar Imaging System

被引:97
|
作者
Jess, D. B. [1 ]
Mathioudakis, M. [1 ]
Christian, D. J. [2 ]
Keenan, F. P. [1 ]
Ryans, R. S. I. [1 ]
Crockett, P. J. [1 ]
机构
[1] Queens Univ Belfast, Astrophys Res Ctr, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland
[2] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA
基金
英国科学技术设施理事会;
关键词
Instrumentation and data management; HIGH-FREQUENCY OSCILLATIONS; CORONAL LOOPS; CHROMOSPHERE; RESOLUTION; SPECTROSCOPY; SUNSPOT; FLARES; WAVE; SUN;
D O I
10.1007/s11207-009-9500-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen's University Belfast. The system is available on the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k x 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 -aEuro parts per thousand 15 e s(-1) pixel(-1)), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, or 200 Hz when the CCD is windowed. Combining multiple cameras and fast readout rates, ROSA will accumulate approximately 12 TB of data per 8 hours observing. Following successful commissioning during August 2008, ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution.
引用
收藏
页码:363 / 373
页数:11
相关论文
共 50 条
  • [31] Hierarchical database for a multi-camera surveillance system
    Black, J
    Makris, D
    Ellis, T
    PATTERN ANALYSIS AND APPLICATIONS, 2005, 7 (04) : 430 - 446
  • [32] Stability Analysis for a Multi-Camera Photogrammetric System
    Habib, Ayman
    Detchev, Ivan
    Kwak, Eunju
    SENSORS, 2014, 14 (08): : 15084 - 15112
  • [33] 3D reconstruction of a compressible flow by synchronized multi-camera BOS
    Nicolas, F.
    Donjat, D.
    Leon, O.
    Le Besnerais, G.
    Champagnat, F.
    Micheli, F.
    EXPERIMENTS IN FLUIDS, 2017, 58 (05)
  • [34] Planar Motion Estimation for Multi-camera System
    Qi, Xinlei
    Ding, Yaqing
    Xie, Jin
    Yang, Jian
    PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 116 - 129
  • [35] Hierarchical database for a multi-camera surveillance system
    James Black
    Dimitrios Makris
    Tim Ellis
    Pattern Analysis and Applications, 2004, 7 : 430 - 446
  • [36] 3D reconstruction of a compressible flow by synchronized multi-camera BOS
    F. Nicolas
    D. Donjat
    O. Léon
    G. Le Besnerais
    F. Champagnat
    F. Micheli
    Experiments in Fluids, 2017, 58
  • [37] Whistler instability driven by the sunward electron deficit in the solar wind High-cadence Solar Orbiter observations
    Bercic, L.
    Verscharen, D.
    Owen, C. J.
    Colomban, L.
    Kretzschmar, M.
    Chust, T.
    Maksimovic, M.
    Kataria, D. O.
    Anekallu, C.
    Behar, E.
    Berthomier, M.
    Bruno, R.
    Fortunato, V
    Kelly, C. W.
    Khotyaintsev, Y., V
    Lewis, G. R.
    Livi, S.
    Louarn, P.
    Mele, G.
    Nicolaou, G.
    Watson, G.
    Wicks, R. T.
    ASTRONOMY & ASTROPHYSICS, 2021, 656 (656)
  • [38] A calibration method for an omnidirectional multi-camera system
    Ikeda, S
    Sato, T
    Yokoya, N
    STEREOSCOPIC DISPLAYS AND VIRTUAL REALITY SYSTEMS X, 2003, 5006 : 499 - 507
  • [39] CrossbowCam: a handheld adjustable multi-camera system
    Che-Hao Hsu
    Wen-Huang Cheng
    Yi-Leh Wu
    Wen-Shiung Huang
    Tao Mei
    Kai-Lung Hua
    Multimedia Tools and Applications, 2017, 76 : 24961 - 24981
  • [40] Dumbbell calibration for a multi-camera tracking system
    Lu, Yan
    Payandeh, Shahram
    2007 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, 2007, : 1472 - 1475