Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients

被引:152
|
作者
Kafienah, Wael
Mistry, Sanjay
Dickinson, Sally C.
Sims, Trevor J.
Learmonth, Ian
Hollander, Anthony P. [1 ]
机构
[1] Southmead Gen Hosp, Avon Orthopaed Ctr, AMBI Res Labs, Dept Clin Sci N Bristol, Bristol BS10 5NB, Avon, England
[2] Univ Bristol, Bristol BS8 1TH, Avon, England
来源
ARTHRITIS AND RHEUMATISM | 2007年 / 56卷 / 01期
关键词
D O I
10.1002/art.22285
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective. To determine whether it is possible to engineer 3-dimensional hyaline cartilage using mesenchymal stem cells derived from the bone marrow (BMSCs) of patients with osteoarthritis (OA). Methods. Expanded BMSCs derived from patients with hip OA were seeded onto polyglycolic acid scaffolds and differentiated using transforming growth factor beta 3 in the presence or absence of parathyroid hormone-related protein (PTHrP) to regulate hypertrophy. Micromass pellet cultures were established using the same cells for comparison. At the end of culture, the constructs or pellets were processed for messenger RNA (mRNA) analysis by quantitative real-time reverse transcription-polymerase chain reaction. Matrix proteins were analyzed using specific assays. Results. Cartilage constructs engineered from BMSCs were at least 5 times the weight of equivalent pellet cultures. Histologic, mRNA, and biochemical analyses of the constructs showed extensive synthesis of proteoglycan and type II collagen but only low levels of type I collagen. The protein content was almost identical to that of cartilage engineered from bovine nasal chondrocytes. Analysis of type X collagen mRNA revealed a high level of mRNA in chondrogenic constructs compared with that in undifferentiated BMSCs, indicating an increased risk of hypertrophy in the tissue-engineered cells. However, the inclusion of PTHrP at a dose of 1 mu M or 10 mu M during the culture period resulted in significant suppression of type X collagen mRNA expression and a significant decrease in alkaline phosphatase activity, without any loss of the cartilage-specific matrix proteins. Conclusion. Three-dimensional hyaline cartilage can be engineered using BMSCs from patients with OA. This method could thus be used for the repair of cartilage lesions.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [31] A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage
    Moutos, Franklin T.
    Freed, Lisa E.
    Guilak, Farshid
    NATURE MATERIALS, 2007, 6 (02) : 162 - 167
  • [32] Cartilage tissue engineering: From hydrogel to mesenchymal stem cells
    Merceron, C.
    Portron, S.
    Masson, M.
    Fellah, B. H.
    Gauthier, O.
    Lesoeur, J.
    Cherel, Y.
    Weiss, P.
    Guicheux, J.
    Vinatier, C.
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2010, 20 (3-4) : 159 - 166
  • [33] Designing a three-dimensional alginate hydrogel by spraying method for cartilage tissue engineering
    Tritz, Jessica
    Rahouadj, Rachid
    de Isla, Natalia
    Charif, Naceur
    Pinzano, Astrid
    Mainard, Didier
    Bensoussan, Danielle
    Netter, Patrick
    Stoltz, Jean-Francois
    Benkirane-Jessel, Nadia
    Huselstein, Celine
    SOFT MATTER, 2010, 6 (20) : 5165 - 5174
  • [34] A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage
    Franklin T. Moutos
    Lisa E. Freed
    Farshid Guilak
    Nature Materials, 2007, 6 : 162 - 167
  • [35] Differentiation of human bone marrow mesenchymal stem cells to chondrocytes for construction of three-dimensional cartilage tissue
    Matsuda, C
    Takagi, M
    Hattori, T
    Wakitani, S
    Yoshida, T
    CYTOTECHNOLOGY, 2005, 47 (1-3) : 11 - 17
  • [36] Differentiation of Human Bone Marrow Mesenchymal Stem Cells to Chondrocytes for Construction of Three-dimensional Cartilage Tissue
    Chikayoshi Matsuda
    Mutsumi Takagi
    Takako Hattori
    Shigeyuki Wakitani
    Toshiomi Yoshida
    Cytotechnology, 2005, 47 : 11 - 17
  • [37] Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique
    Woodfield, TBF
    Malda, J
    de Wijn, J
    Péters, F
    Riesle, J
    van Blitterswijk, CA
    BIOMATERIALS, 2004, 25 (18) : 4149 - 4161
  • [38] Adult Stem Cells Meet Three-Dimensional Culture Environments: A Perspective in Myocardial Tissue Restoring
    Berta, Giovanni N.
    Rastaldo, Raffaella
    Di Scipio, Federica
    Sprio, Andrea E.
    Salamone, Paolina
    Folino, Anna
    Pagliari, Francesca
    Pagliari, Stefania
    Forte, Giancarlo
    Pagliaro, Pasquale
    Di Nardo, Paolo
    Losano, Gianni
    ADULT STEM CELL STANDARDIZATION, 2011, 1 : 1 - 8
  • [39] A novel injectable scaffold for cartilage tissue engineering using adipose-derived adult stem cells
    Wei, Yiyong
    Hu, Yunyu
    Hao, Wei
    Han, Yisheng
    Meng, Guolin
    Zhang, Dezhi
    Wu, Zixiang
    Wang, Haiqiang
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2008, 26 (01) : 27 - 33
  • [40] Stem cells for tissue engineering of articular cartilage
    Gao, J.
    Yao, J. Q.
    Caplan, A. I.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2007, 221 (H5) : 441 - 450