Multigrid treatment and robustness enhancement for factored sparse approximate inverse preconditioning

被引:0
|
作者
Kai, W [1 ]
Jun, Z [1 ]
机构
[1] Univ Kentucky, Dept Comp Sci, Lab High Performance Sci Comp & Comp Simulat, Lexington, KY 40506 USA
关键词
sparse matrices; incomplete LU factorization; multilevel ILU preconditioner; sparse approximate inverse; algebraic multigrid method; Krylov subspace methods;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the use of sparse approximate inverse techniques (SAI) in a grid based multilevel ILU preconditioner (GILUM) to design a robust and parallelizable preconditioner for solving general sparse matrices. Taking the advantages of grid based multilevel methods, the resulting preconditioner outperforms sparse approximate inverse in robustness and efficiency. Conversely, taking the advantages of sparse approximate inverse, it affords an easy and convenient way to introduce parallelism within multilevel structure. Moreover, an independent set search strategy with automatic diagonal thresholding and a relative threshold dropping strategy are proposed to improve preconditioner performance. Numerical experiments are used to show the effectiveness and efficiency of the proposed preconditioner, and to compare it with some single and multilevel preconditioners. (C) 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:483 / 500
页数:18
相关论文
共 50 条
  • [31] Ordering, anisotropy, and factored sparse approximate inverses
    Bridson, R
    Tang, WP
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (03): : 867 - 882
  • [32] A robust AINV-type method for constructing sparse approximate inverse preconditioners in factored form
    Kharchenko, SA
    Kolotilina, LY
    Nikishin, AA
    Yeremin, AY
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2001, 8 (03) : 165 - 179
  • [33] Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics
    Alleon, G
    Benzi, M
    Giraud, L
    NUMERICAL ALGORITHMS, 1997, 16 (01) : 1 - 15
  • [34] Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics
    Guillaume Alléon
    Michele Benzi
    Luc Giraud
    Numerical Algorithms, 1997, 16 : 1 - 15
  • [35] MSP: A class of parallel multistep successive sparse approximate inverse preconditioning strategies
    Wang, K
    Zhang, J
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (04): : 1141 - 1156
  • [36] A two-phase preconditioning strategy of sparse approximate inverse for indefinite matrices
    Lee, Eun-Joo
    Zhang, Jun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (06) : 1152 - 1159
  • [37] Factored approximate inverse preconditioners with dynamic sparsity patterns
    Lee, Eun-Joo
    Zhang, Jun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (01) : 235 - 242
  • [38] ACCELERATING THE MULTILEVEL FAST MULTIPOLE ALGORITHM WITH THE SPARSE-APPROXIMATE-INVERSE (SAI) PRECONDITIONING
    Malas, Tahir
    Gurel, Levent
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03): : 1968 - 1984
  • [39] A thread-adaptive sparse approximate inverse preconditioning algorithm on multi-GPUs
    Gao, Jiaquan
    Chen, Qi
    He, Guixia
    PARALLEL COMPUTING, 2021, 101
  • [40] Factorized Sparse Approximate Inverses for Preconditioning
    Thomas Huckle
    The Journal of Supercomputing, 2003, 25 : 109 - 117