Multigrid treatment and robustness enhancement for factored sparse approximate inverse preconditioning

被引:0
|
作者
Kai, W [1 ]
Jun, Z [1 ]
机构
[1] Univ Kentucky, Dept Comp Sci, Lab High Performance Sci Comp & Comp Simulat, Lexington, KY 40506 USA
关键词
sparse matrices; incomplete LU factorization; multilevel ILU preconditioner; sparse approximate inverse; algebraic multigrid method; Krylov subspace methods;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the use of sparse approximate inverse techniques (SAI) in a grid based multilevel ILU preconditioner (GILUM) to design a robust and parallelizable preconditioner for solving general sparse matrices. Taking the advantages of grid based multilevel methods, the resulting preconditioner outperforms sparse approximate inverse in robustness and efficiency. Conversely, taking the advantages of sparse approximate inverse, it affords an easy and convenient way to introduce parallelism within multilevel structure. Moreover, an independent set search strategy with automatic diagonal thresholding and a relative threshold dropping strategy are proposed to improve preconditioner performance. Numerical experiments are used to show the effectiveness and efficiency of the proposed preconditioner, and to compare it with some single and multilevel preconditioners. (C) 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:483 / 500
页数:18
相关论文
共 50 条
  • [1] THE USE OF SUPERNODES IN FACTORED SPARSE APPROXIMATE INVERSE PRECONDITIONING
    Janna, Carlo
    Ferronato, Massimiliano
    Gambolati, Giuseppe
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01): : C72 - C94
  • [2] FSAIPACK: A Software Package for High-Performance Factored Sparse Approximate Inverse Preconditioning
    Janna, Carlo
    Ferronato, Massimiliano
    Sartoretto, Flavio
    Gambolati, Giuseppe
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2015, 41 (02):
  • [3] Sparse approximate inverse smoother for multigrid
    Tang, WP
    Wan, WL
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1236 - 1252
  • [4] Sparse approximate inverse smoothers for geometric and algebraic multigrid
    Bröker, O
    Grote, MJ
    APPLIED NUMERICAL MATHEMATICS, 2002, 41 (01) : 61 - 80
  • [5] A sparse approximate inverse technique for parallel preconditioning of sparse matrices
    Zhang, J
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOL VI, PROCEEDINGS, 1999, : 2934 - 2940
  • [6] Factored sparse approximate inverse of block tridiagonal and block pentadiagonal matricies
    Koulaei, Mohammad H.
    Toutounian, Faezeh
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 184 (02) : 223 - 234
  • [7] Optimizing the sparse approximate inverse preconditioning algorithm on GPU
    Chu X.
    Wang Y.
    Chen Q.
    Gao J.
    BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2022, 2 (04):
  • [8] Approximate inverse preconditioning in the parallel solution of sparse eigenproblems
    Bergamaschi, L
    Pini, G
    Sartoretto, F
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2000, 7 (03) : 99 - 116
  • [9] An efficient sparse approximate inverse preconditioning algorithm on GPU
    He, Guixia
    Yin, Renjie
    Gao, Jiaquan
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (07):
  • [10] An efficient sparse approximate inverse preconditioning for FMM implementation
    Rui, P. L.
    Chen, R. S.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (07) : 1746 - 1750