Improved semi-local convergence of the Newton-HSS method for solving large systems of equations

被引:2
|
作者
Argyros, Ioannis K. [1 ]
George, Santhosh [2 ]
Magrenan, Alberto [3 ]
机构
[1] Cameron Univ, Lawton, OK 73505 USA
[2] NIT Karnataka, Mangalore, India
[3] Univ La Rioja, Logrono, Spain
关键词
Newton-HSS method; Systems of nonlinear equations; Semi-local convergence; HERMITIAN SPLITTING METHODS; ITERATIVE METHODS;
D O I
10.1016/j.aml.2019.04.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to present the correct version of the main theorem 3.2 given in Guo and Duff (2011), concerning the semi-local convergence analysis of the Newton-HSS (NHSS) method for solving systems of nonlinear equations. Our analysis also includes the corrected upper bound on the initial point. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:29 / 35
页数:7
相关论文
共 50 条
  • [31] Local convergence of the Newton method for generalized equations
    Dontchev, AL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (04): : 327 - 331
  • [32] Multi-step modified Newton-HSS methods for systems of nonlinear equations with positive definite Jacobian matrices
    Yang Li
    Xue-Ping Guo
    Numerical Algorithms, 2017, 75 : 55 - 80
  • [33] Local convergence analysis of Newton's method for solving strongly regular generalized equations
    Ferreira, O. P.
    Silva, G. N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 481 - 496
  • [34] Inexact Newton method for solving large and sparse systems of nonlinear equations
    杨凤红
    唐云
    何淼
    延边大学学报(自然科学版), 2003, (03) : 157 - 160
  • [35] Multi-step modified Newton-HSS methods for systems of nonlinear equations with positive definite Jacobian matrices
    Li, Yang
    Guo, Xue-Ping
    NUMERICAL ALGORITHMS, 2017, 75 (01) : 55 - 80
  • [36] Semi-local convergence of Cordero's sixth-order method
    Wang, Xiaofeng
    Shang, Ning
    AIMS MATHEMATICS, 2024, 9 (03): : 5937 - 5950
  • [37] A Comparison Study of the Classical and Modern Results of Semi-Local Convergence of Newton-Kantorovich Iterations
    Regmi, Samundra
    Argyros, Ioannis K.
    George, Santhosh
    Argyros, Christopher, I
    MATHEMATICS, 2022, 10 (08)
  • [38] Convergence analysis of a variant of the Newton method for solving nonlinear equations
    Lin, Yiqin
    Bao, Liang
    Jia, Xianzheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (06) : 2121 - 2127
  • [39] A New Optimal Numerical Root-Solver for Solving Systems of Nonlinear Equations Using Local, Semi-Local, and Stability Analysis
    Qureshi, Sania
    Chicharro, Francisco I.
    Argyros, Ioannis K.
    Soomro, Amanullah
    Alahmadi, Jihan
    Hincal, Evren
    AXIOMS, 2024, 13 (06)
  • [40] On the Semi-Local Convergence of Two Competing Sixth Order Methods for Equations in Banach Space
    Argyros, Ioannis K.
    Shakhno, Stepan
    Regmi, Samundra
    Yarmola, Halyna
    ALGORITHMS, 2023, 16 (01)