Learning a Low Tensor-Train Rank Representation for Hyperspectral Image Super-Resolution

被引:318
|
作者
Dian, Renwei [1 ,2 ]
Li, Shutao [1 ,2 ]
Fang, Leyuan [1 ,2 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Key Lab Visual Percept & Artificial Intel, Changsha 410082, Hunan, Peoples R China
关键词
Hyperspectral imaging; image fusion; low tensor-train (TT) rank (LTTR) learning; superresolution; MATRIX FACTORIZATION; FUSION; COMPLETION; ALGORITHM; GRAPH;
D O I
10.1109/TNNLS.2018.2885616
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral images (HSIs) with high spectral resolution only have the low spatial resolution. On the contrary, multispectral images (MSIs) with much lower spectral resolution can be obtained with higher spatial resolution. Therefore, fusing the high-spatial-resolution MSI (HR-MSI) with low-spatialresolution HSI of the same scene has become the very popular HSI super-resolution scheme. In this paper, a novel low tensortrain (TT) rank (LTTR)-based HSI super-resolution method is proposed, where an LTTR prior is designed to learn the correlations among the spatial, spectral, and nonlocal modes of the nonlocal similar high-spatial-resolution HSI (HR-HSI) cubes. First, we cluster the HR-MSI cubes as many groups based on their similarities, and the HR-HSI cubes are also clustered according to the learned cluster structure in the HR-MSI cubes. The HR-HSI cubes in each group are much similar to each other and can constitute a 4-D tensor, whose four modes are highly correlated. Therefore, we impose the LTTR constraint on these 4-D tensors, which can effectively learn the correlations among the spatial, spectral, and nonlocal modes because of the well balanced matricization scheme of TT rank. We formulate the super-resolution problem as TT rank regularized optimization problem, which is solved via the scheme of alternating direction method of multipliers. Experiments on HSI data sets indicate the effectiveness of the LTTR-based method.
引用
收藏
页码:2672 / 2683
页数:12
相关论文
共 50 条
  • [31] Bayesian Nonlocal Patch Tensor Factorization for Hyperspectral Image Super-Resolution
    Ye, Fei
    Wu, Zebin
    Jia, Xiuping
    Chanussot, Jocelyn
    Xu, Yang
    Wei, Zhihui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5877 - 5892
  • [32] HYPERSPECTRAL IMAGE SUPER-RESOLUTION USING SPARSE SPECTRAL UNMIXING AND LOW-RANK CONSTRAINTS
    Li, Zeyu
    Li, Chao
    Deng, Cheng
    Li, Jie
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7224 - 7227
  • [33] Hyperspectral Image Super-Resolution with RGB Image Super-Resolution as an Auxiliary Task
    Li, Ke
    Dai, Dengxin
    van Gool, Luc
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 4039 - 4048
  • [34] Hyperspectral Images Super-Resolution via Learning High-Order Coupled Tensor Ring Representation
    Xu, Yang
    Wu, Zebin
    Chanussot, Jocelyn
    Wei, Zhihui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (11) : 4747 - 4760
  • [35] GJTD-LR: A Trainable Grouped Joint Tensor Dictionary With Low-Rank Prior for Single Hyperspectral Image Super-Resolution
    Liu, Cong
    Fan, Zhihao
    Zhang, Guixu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [36] Super-Resolution of Medical Image Using Representation Learning
    Yang, Xiong
    Zhan, Shu
    Hu, Changsheng
    Liang, Zhicheng
    Xie, Dongdong
    2016 8TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP), 2016,
  • [37] A CONVEX LOW-RANK REGULARIZATION METHOD FOR HYPERSPECTRAL SUPER-RESOLUTION
    Wu, Ruiyuan
    Li, Qiang
    Fu, Xiao
    Ma, Wing-Kin
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 383 - 387
  • [38] Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution
    Akhtar, Naveed
    Shafait, Faisal
    Mian, Ajmal
    COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 : 63 - 78
  • [39] LOCAL SIMILARITY REGULARIZED SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION
    Tang, Songze
    Zhou, Nan
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5120 - 5123
  • [40] HYPERSPECTRAL IMAGE SUPER-RESOLUTION BASED ON NON-FACTORIZATION SPARSE REPRESENTATION AND DICTIONARY LEARNING
    Han, Xiaolin
    Yu, Jing
    Sun, Weidong
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 963 - 966