Cellular therapy and tissue engineering for cartilage repair

被引:37
|
作者
Zelinka, A. [1 ]
Roelofs, A. J. [2 ]
Kandel, R. A. [1 ]
De Bari, C. [2 ]
机构
[1] Univ Toronto, Lunenfeld Tanenbaum Res Inst, Dept Lab Med & Pathobiol, Sinai Hlth, Toronto, ON, Canada
[2] Univ Aberdeen, Aberdeen Ctr Arthrit & Musculoskeletal Hlth, Arthrit & Regenerat Med Lab, Aberdeen, Scotland
基金
英国医学研究理事会;
关键词
Tissue engineering; Stem cells; Regenerative medicine; Cartilage repair; Osteoarthritis; MESENCHYMAL STEM-CELLS; AUTOLOGOUS CHONDROCYTE IMPLANTATION; SELF-ASSEMBLING PROCESS; ARTICULAR-CARTILAGE; BONE-MARROW; TGF-BETA; MECHANICAL-PROPERTIES; PHENOTYPIC STABILITY; OSTEOARTHRITIC KNEES; SUBCHONDRAL BONE;
D O I
10.1016/j.joca.2022.07.012
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Articular cartilage (AC) has limited capacity for repair. The first attempt to repair cartilage using tissue engineering was reported in 1977. Since then, cell-based interventions have entered clinical practice in orthopaedics, and several tissue engineering approaches to repair cartilage are in the translational pipeline towards clinical application. Classically, these involve a scaffold, substrate or matrix to provide structure, and cells such as chondrocytes or mesenchymal stromal cells to generate the tissue. We discuss the advantages and drawbacks of the use of various cell types, natural and synthetic scaffolds, multiphasic or gradient-based scaffolds, and self-organizing or self-assembling scaffold-free systems, for the engineering of cartilage constructs. Several challenges persist including achieving zonal tissue organization and integration with the surrounding tissue upon implantation. Approaches to improve cartilage thickness, organization and mechanical properties include mechanical stimulation, culture under hypoxic conditions, and stimulation with growth factors or other macromolecules. In addition, advanced technologies such as bioreactors, biosensors and 3D bioprinting are actively being explored. Understanding the underlying mechanisms of action of cell therapy and tissue engineering approaches will help improve and refine therapy development. Finally, we discuss recent studies of the intrinsic cellular and molecular mechanisms of cartilage repair that have identified novel signals and targets and are inspiring the development of molecular therapies to enhance the recruitment and cartilage reparative activity of joint-resident stem and progenitor cells. A one-fits-all solution is unrealistic, and identifying patients who will respond to a specific targeted treatment will be critical. (c) 2022 The Authors. Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International.
引用
收藏
页码:1547 / 1560
页数:14
相关论文
共 50 条
  • [41] Immune modulation and tissue engineering/regenerative medicine strategies for cartilage repair
    Murphy, M.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2014, 8 : 9 - 9
  • [42] Spatio-temporal control of cellular differentiation for cartilage tissue engineering
    Garcia, Jules Simonin
    Echalier, Cecile
    Belamie, Emmanuel
    Morille, Marie
    Subra, Gilles
    JOURNAL OF PEPTIDE SCIENCE, 2024, 30
  • [43] Cartilage Tissue Engineering
    Moreira-Teixeira, Liliana S.
    Georgi, Nicole
    Leijten, Jeroen
    Wu, Ling
    Karperien, Marcel
    CARTILAGE AND BONE DEVELOPMENT AND ITS DISORDERS, 2011, 21 : 102 - 115
  • [44] Cartilage tissue engineering
    Yaremchuk, M. J.
    Randolph, M. A.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONGRESS OF MAXILLOFACIAL AND CRANIOFACIAL DISTRACTION, 2006, : 5 - +
  • [45] Tissue engineering of cartilage
    Randolph, MA
    Anseth, K
    Yaremchuk, MJ
    CLINICS IN PLASTIC SURGERY, 2003, 30 (04) : 519 - +
  • [46] CARTILAGE TISSUE ENGINEERING
    Chang, Chih-Hung
    Lin, Feng-Huei
    Kuo, Tzong-Fu
    Liu, Hwa-Chang
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2005, 17 (02): : 61 - 71
  • [47] Cartilage tissue engineering
    Köse, GT
    Hasirci, V
    BIOMATERIALS: FROM MOLECULES TO ENGINEERED TISSUES, 2004, 553 : 317 - 329
  • [48] Tissue engineering of cartilage
    Hepp, P.
    Bader, A.
    Josten, C.
    Rose, T.
    Schulz, R.
    ARTHROSKOPIE, 2005, 18 (03) : 233 - 238
  • [49] Engineering cartilage tissue
    Chung, Cindy
    Burdick, Jason. A.
    ADVANCED DRUG DELIVERY REVIEWS, 2008, 60 (02) : 243 - 262
  • [50] Engineering Inflammation-Resistant Cartilage: Bridging Gene Therapy and Tissue Engineering
    Bonato, Angela
    Fisch, Philipp
    Ponta, Simone
    Fercher, David
    Manninen, Mikko
    Weber, Daniel
    Eklund, Kari K.
    Barreto, Goncalo
    Zenobi-Wong, Marcy
    ADVANCED HEALTHCARE MATERIALS, 2023, 12 (17)