Phase segregation dynamics for the Blume-Capel model with Kac interaction?

被引:8
|
作者
Marra, R
Mourragui, M
机构
[1] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy
[2] Univ Roma Tor Vergata, Unita INFM, I-00133 Rome, Italy
[3] Univ Rouen, UPRESA 6085, F-76821 Mt St Aignan, France
关键词
interacting particle and spin systems; Kac potential; hydrodynamic limits; phase segregation;
D O I
10.1016/S0304-4149(99)00120-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the Glauber and Kawasaki dynamics for the Blume-Capel spin model with weak long-range interaction on the infinite lattice: a ferromagnetic d-dimensional lattice system with the spin variable sigma taking values in {-1, 0, 1} and pair Kac potential gamma(d)(gamma(\ i - j \)), gamma > 0, i,j is an element of Z(d). The Kawasaki dynamics conserves the empirical averages of sigma and sigma(2) corresponding to local magnetization and local concentration. We study the behaviour of the system under the Kawasaki dynamics on the spatial scale gamma(-1) and time scale gamma(-2). We prove that the empirical averages converge in the limit gamma --> 0 to the solutions of two coupled equations, which are in the form of the flux gradient for the energy functional. In the case of the Glauber dynamics we still scale the space as gamma(-1) but look at finite time and prove in the limit of vanishing gamma the law of large number for the empirical fields. The limiting fields are solutions of two coupled nonlocal equations. Finally, we consider a nongradient dynamics which conserves only the magnetization and get a hydrodynamic equation for it in the diffusive limit which is again in the form of the flux gradient for a suitable energy functional. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:79 / 124
页数:46
相关论文
共 50 条
  • [21] MULTICRITICAL BEHAVIOR IN THE ANTIFERROMAGNETIC BLUME-CAPEL MODEL
    WANG, YL
    KIMEL, JD
    JOURNAL OF APPLIED PHYSICS, 1991, 69 (08) : 6176 - 6178
  • [22] Metastable magnetic structures in the Blume-Capel model
    Kulakowski, K
    Antoniuk, M
    Del Moral, A
    Gawronski, P
    ACTA PHYSICA POLONICA A, 2000, 97 (05) : 893 - 896
  • [23] Interface tension in the improved Blume-Capel model
    Hasenbusch, Martin
    PHYSICAL REVIEW E, 2017, 96 (03)
  • [24] ISING BEHAVIOR IN A DILUTED BLUME-CAPEL MODEL
    JANOWSKY, SA
    PHYSICS LETTERS A, 1988, 134 (02) : 131 - 133
  • [25] Homogeneous and inhomogeneous phase transitions in the Blume-Capel model with random bonds
    Wu, X. T.
    PHYSICAL REVIEW E, 2010, 82 (01):
  • [26] Phase diagrams of the spin-5/2 Blume-Capel model
    Karimou, M.
    de Arruda, A. S.
    Godoy, M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 540
  • [27] Phase transitions and critical phenomena of the Blume-Capel model in complex networks
    Wang, Jincheng
    Liu, Wei
    Wang, Fangfang
    Li, Zerun
    Xiong, Kezhao
    EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (02):
  • [28] PHASE-DIAGRAM FOR THE ANTIFERROMAGNETIC BLUME-CAPEL MODEL NEAR TRICRITICALITY
    KIMEL, JD
    RIKVOLD, PA
    WANG, YL
    PHYSICAL REVIEW B, 1992, 45 (13): : 7237 - 7243
  • [29] Phase diagram of the spin-3/2 Blume-Capel model
    Plascak, JA
    Landau, DP
    COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XII, 2000, 85 : 100 - 104
  • [30] Multilayer transition in a spin 3/2 Blume-Capel model with RKKY interaction
    Tahiri, Najim
    Ez-Zahraouy, Hamid
    Benyoussef, Abdelilah
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (17) : 3426 - 3432