Bi-Lipschitz Sufficiency of Jets

被引:0
|
作者
Valette, Guillaume [1 ,2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Inst Matemat PAN, PL-31027 Krakow, Poland
关键词
Stratified sets; Sufficiency of jets; Bi-Lipschitz equivalence; FINITE DETERMINACY; STRATIFICATIONS;
D O I
10.1007/s12220-009-9093-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give some theorems of bi-Lipschitz or C (1) sufficiency of jets which are expressed by means of transversality with respect to some strata of a stratification satisfying the (L) condition of T. Mostowski. This enables us to prove that the number of metric types of intersection of smooth transversals to a stratum of an (a) regular stratification of a subanalytic set is finite.
引用
收藏
页码:963 / 993
页数:31
相关论文
共 50 条
  • [21] On the piecewise approximation of bi-Lipschitz curves
    Pratelli, Aldo
    Radici, Emanuela
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2017, 138 : 1 - 37
  • [22] Bi-Lipschitz decomposition of Lipschitz functions into a metric space
    Schul, Raanan
    REVISTA MATEMATICA IBEROAMERICANA, 2009, 25 (02) : 521 - 531
  • [23] Bi-Lipschitz geometry of quasiconformal trees
    David, Guy C.
    Vellis, Vyron
    ILLINOIS JOURNAL OF MATHEMATICS, 2022, 66 (02) : 189 - 244
  • [24] On the Bi-Lipschitz Geometry of Lamplighter Graphs
    F. Baudier
    P. Motakis
    Th. Schlumprecht
    A. Zsák
    Discrete & Computational Geometry, 2021, 66 : 203 - 235
  • [25] On the Bi-Lipschitz Geometry of Lamplighter Graphs
    Baudier, F.
    Motakis, P.
    Schlumprecht, Th.
    Zsak, A.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (01) : 203 - 235
  • [26] Bi-Lipschitz Characterization of Space Curves
    Fernandes, Alexandre
    Jelonek, Zbigniew
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (03):
  • [27] Bi-Lipschitz parts of quasisymmetric mappings
    Azzam, Jonas
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (02) : 589 - 648
  • [28] A planar bi-Lipschitz extension theorem
    Daneri, Sara
    Pratelli, Aldo
    ADVANCES IN CALCULUS OF VARIATIONS, 2015, 8 (03) : 221 - 266
  • [29] Multiplicity of singularities is not a bi-Lipschitz invariant
    Birbrair, Lev
    Fernandes, Alexandre
    Edson Sampaio, J.
    Verbitsky, Misha
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 115 - 121
  • [30] BI-LIPSCHITZ EMBEDDING OF PROJECTIVE METRICS
    Kovalev, Leonid V.
    CONFORMAL GEOMETRY AND DYNAMICS, 2014, 18 : 110 - 118