Asymptotics for semi-strong augmented GARCH(1,1) model

被引:0
|
作者
Lee, Oesook [1 ]
Kim, Jooyoung [1 ]
机构
[1] Ewha Womans Univ, Dept Stat, Seoul 03760, South Korea
关键词
Semi-strong augmented GARCH(1,1) model; functional central limit theorem; L-2-NED; alpha-mixing; phi-mixing;
D O I
10.1080/03610926.2021.1887894
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we study a family of so-called semi-strong augmented GARCH(1,1) model where the innovation process is strictly stationary and mixing instead of independent and identically distributed. We give a necessary and sufficient condition for stationarity of the process and study the functional central limit theorems for h(sigma(2)(t)), vertical bar u(t)vertical bar(0), and u(t) when the process is stationary. We also investigate the dynamic behavior of semi-strong GARCH(1,1) model when it is non stationary.
引用
收藏
页码:8093 / 8109
页数:17
相关论文
共 50 条
  • [31] Is Beta-t-EGARCH(1,1) superior to GARCH(1,1)?
    Blazsek, Szabolcs
    Villatoro, Marco
    APPLIED ECONOMICS, 2015, 47 (17) : 1764 - 1774
  • [32] The extremal index for GARCH(1,1) processes
    Laurini, Fabrizio
    Tawn, Jonathan A.
    EXTREMES, 2012, 15 (04) : 511 - 529
  • [33] The pitfalls in fitting GARCH(1,1) processes
    Zumbach, G
    ADVANCES IN QUANTITATIVE ASSET MANAGEMENT, 2000, 1 : 179 - 200
  • [34] A multiple regime extension to the Heston-Nandi GARCH(1,1) model
    Diaz-Hernandez, Adan
    Constantinou, Nick
    JOURNAL OF EMPIRICAL FINANCE, 2019, 53 : 162 - 180
  • [35] Estimation of Volatility in BSE-SENSEX by Fitting GARCH (1,1) Model
    Krishnakumare, B.
    Niranjan, S.
    Murugananthi, D.
    INDIAN JOURNAL OF ECONOMICS AND DEVELOPMENT, 2020, 16 (03) : 469 - 472
  • [36] Bayesian Estimation of the GARCH(1,1) Model with Student-t Innovations
    Ardia, David
    Hoogerheide, Lennart F.
    R JOURNAL, 2010, 2 (02): : 41 - 47
  • [37] Asymptotic theory for QMLE for the real-time GARCH(1,1) model
    Smetanina, Ekaterina
    Wu, Wei Biao
    JOURNAL OF TIME SERIES ANALYSIS, 2021, 42 (5-6) : 752 - 776
  • [38] Mean targeting estimator for the integer-valued GARCH(1,1) model
    Li, Qi
    Zhu, Fukang
    STATISTICAL PAPERS, 2020, 61 (02) : 659 - 679
  • [39] Spikes and localised patterns for a novel Schnakenberg model in the semi-strong interaction regime
    Al Saadi, Fahad
    Champneys, Alan
    Gai, Chunyi
    Kolokolnikov, Theodore
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2022, 33 (01) : 133 - 152
  • [40] Stable limits for the Gaussian QMLE in the non-stationary GARCH(1,1) model
    Arvanitis, Stelios
    Louka, Alexandros
    ECONOMICS LETTERS, 2017, 161 : 135 - 137