Regularization with multilevel non-stationary tight framelets for image restoration

被引:4
|
作者
Li, Yan-Ran [1 ,2 ,3 ,4 ]
Chan, Raymond H. F. [5 ]
Shen, Lixin [6 ]
Zhuang, Xiaosheng [5 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Shenzhen Key Lab Media Secur, Shenzhen 518060, Peoples R China
[4] Shenzhen Inst Artificial Intelligence & Robot Soc, SZU Branch, Shenzhen, Peoples R China
[5] City Univ Hong Kong, Dept Math, Kowloon Tong, Tat Chee Ave, Hong Kong, Peoples R China
[6] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
NOISE REMOVAL; RECOVERY; ALGORITHMS;
D O I
10.1016/j.acha.2021.03.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variational regularization models are one of the popular and efficient approaches for image restoration. The regularization functional in the model carries prior knowledge about the image to be restored. The prior knowledge, in particular for natural images, are the first-order (i.e. variance in luminance) and second-order (i.e. contrast and texture) information. In this paper, we propose a model for image restoration, using a multilevel non-stationary tight framelet system that can capture the image's first-order and second-order information. We develop an algorithm to solve the proposed model and the numerical experiments show that the model is effective and efficient as compared to other higher-order models. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:332 / 348
页数:17
相关论文
共 50 条
  • [21] Image compression using non-stationary and inhomogeneous multiresolution analyses
    Research Inst for Softwaretechnology, Salzburg, Austria
    Image Vision Comput, 5 (365-371):
  • [22] A non-stationary image prior combination in super-resolution
    Villena, S.
    Vega, M.
    Molina, R.
    Katsaggelos, A. K.
    DIGITAL SIGNAL PROCESSING, 2014, 32 : 1 - 10
  • [23] On the non-stationary Maxwellians
    Gordevskyy, VD
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (02) : 231 - 247
  • [24] Non-stationary cutting
    Berger, BS
    Minis, I
    Harley, J
    Papadopoulos, M
    Rokni, M
    JOURNAL OF SOUND AND VIBRATION, 1998, 217 (01) : 183 - 190
  • [25] Non-stationary cutting
    Univ of Maryland, College Park, United States
    J Sound Vib, 1 (183-190):
  • [26] Drying in stationary and non-stationary conditions
    Kowalski, Stefan Jan
    Pawlowski, Andrzej
    CHEMICAL AND PROCESS ENGINEERING-INZYNIERIA CHEMICZNA I PROCESOWA, 2008, 29 (02): : 337 - 344
  • [27] Drying in stationary and non-stationary conditions
    Poznan University of Technology, Institute of Technology and Chemical Engineering, pl. Marii Sklodowskiej-Curie 2, 60-965 Poznan, Poland
    Chem. Process Eng., 2008, 2 (337-344):
  • [28] STATIONARY AND NON-STATIONARY WIND PROFILE
    ESSENWAN.O
    BILLIONS, NS
    PURE AND APPLIED GEOPHYSICS, 1965, 60 (01) : 160 - &
  • [29] STATIONARY OPERATOR FOR NON-STATIONARY PROCESSES
    ZUBAREV, DN
    DOKLADY AKADEMII NAUK SSSR, 1965, 164 (03): : 537 - &
  • [30] The problem of the stationary and non-stationary tail
    Volberg, O
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1939, 24 : 657 - 661