Charge-Carrier Enrichment at BaZrO3/SrTiO3 Interfaces

被引:9
|
作者
Saeed, Sarmad W. [1 ]
Norby, Truls [1 ]
Bjorheim, Tor S. [1 ]
机构
[1] Univ Oslo, Dept Chem, Ctr Mat Sci & Nanotechnol, FERMiO, Gaustadalleen 21, NO-0349 Oslo, Norway
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2019年 / 123卷 / 34期
关键词
TOTAL-ENERGY CALCULATIONS; SPACE-CHARGE; GRAIN-BOUNDARY; DEFECT CHEMISTRY; CONDUCTIVITY; OXIDE; TEMPERATURE; MICROSTRUCTURE; SEGREGATION; STABILITY;
D O I
10.1021/acs.jpcc.9b06296
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterogeneous doping through nanostructuring has been demonstrated to greatly enhance the transport and mass storage properties of halides and Li-ion conductors by decoupling of charge-compensating species. In this study, we explore the potential of heterogeneous doping of ionically conducting oxides through first-principles and thermodynamic calculations of a model system consisting of acceptor-doped SrTiO3 and BaZrO3. We show that the two dominating defects, v(o)(center dot center dot) and OHo center dot, are thermodynamically favored in BaZrO3 compared to SrTiO3 by 0.64 and 0.56 eV, respectively, in turn leading to an electrostatic potential barrier as large as 0.64 V (relative to BaZrO3) at 800 K. v(o)(center dot center dot), OHo center dot and electron holes as such accumulate on the BaZrO3 side of the interface, leading to a charge-depletion layer in SrTiO3 which thus acts as a heterogeneous acceptor for BaZrO3. These interface effects may drastically enhance the charge-carrier concentration of weakly doped ionic systems, which in turn may lead to novel nanostructured composite materials with enhanced transport properties or, for instance, kinetics for oxygen reduction or water splitting.
引用
收藏
页码:20808 / 20816
页数:9
相关论文
共 50 条
  • [31] Conducting interfaces between amorphous oxide layers and SrTiO3(110) and SrTiO3(111)
    Scigaj, Mateusz
    Gazquez, Jaume
    Varela, Maria
    Fontcuberta, Josep
    Herranz, Gervasi
    Sanchez, Florencio
    SOLID STATE IONICS, 2015, 281 : 68 - 72
  • [32] Structural phase transition and photo-charge carrier transport in SrTiO3
    Galinetto, P.
    Rossella, F.
    Samoggia, G.
    Trepakov, V.
    Kotomin, E.
    Heifets, E.
    Markovin, P.
    Jastrabik, L.
    FERROELECTRICS, 2006, 337 : 1351 - 1360
  • [33] High charge carrier density at the NaTaO3/SrTiO3 hetero-interface
    Nazir, S.
    Schwingenschloegl, U.
    APPLIED PHYSICS LETTERS, 2011, 99 (07)
  • [34] Electron-phonon interaction and charge carrier mass enhancement in SrTiO3
    van Mechelen, J. L. M.
    van der Marel, D.
    Grimaldi, C.
    Kuzmenko, A. B.
    Armitage, N. P.
    Reyren, N.
    Hagemann, H.
    Mazin, I. I.
    PHYSICAL REVIEW LETTERS, 2008, 100 (22)
  • [35] Theory of spin-orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces
    Zhong, Zhicheng
    Toth, Anna
    Held, Karsten
    PHYSICAL REVIEW B, 2013, 87 (16)
  • [36] Structure, stability, and electronic properties of SrTiO3/LaAlO3 and SrTiO3/SrRuO3 interfaces
    Albina, J. -M.
    Mrovec, M.
    Meyer, B.
    Elsaesser, C.
    PHYSICAL REVIEW B, 2007, 76 (16):
  • [37] Influence of SrTiO3 substrate miscut angle on the transport properties of LaAlO3/SrTiO3 interfaces
    Fix, T.
    Schoofs, F.
    Bi, Z.
    Chen, A.
    Wang, H.
    MacManus-Driscoll, J. L.
    Blamire, M. G.
    APPLIED PHYSICS LETTERS, 2011, 99 (02)
  • [38] Hydrothermal Synthesis of SrTiO3: Role of Interfaces
    Kalyani, Vishwanath
    Vasile, Bogdan S.
    Ianculescu, Adelina
    Testino, Andrea
    Carino, Agnese
    Buscaglia, Maria Teresa
    Buscaglia, Vincenzo
    Nanni, Paolo
    CRYSTAL GROWTH & DESIGN, 2015, 15 (12) : 5712 - 5725
  • [39] Electrical characterisation of SrTiO3/Si interfaces
    Konofaos, N
    Evangelou, EK
    Wang, ZC
    Kugler, V
    Helmersson, U
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2002, 303 (01) : 185 - 189
  • [40] Unconventional Superconductivity at LaVO3/SrTiO3 Interfaces
    Halder, Soumyadip
    Garg, Mona
    Mehta, Nikhlesh Singh
    Kumari, Anamika
    Sharma, Rajesh
    Das, Tanmoy
    Chakraverty, Suvankar
    Sheet, Goutam
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (12) : 5859 - 5866