Uniform Minors in Maximally Recoverable Codes

被引:3
|
作者
Grezet, Matthias [1 ]
Westerback, Thomas [2 ]
Freij-Hollanti, Ragnar [1 ]
Hollanti, Camilla [1 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, Aalto 00076, Finland
[2] Malardanen Univ, Div Appl Math, UKK, S-72123 Vasteras, Sweden
基金
芬兰科学院;
关键词
Distributed storage; locally repairable codes; maximally recoverable codes; uniform minors; field size;
D O I
10.1109/LCOMM.2019.2921540
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, locally recoverable codes with maximal recoverability are studied with a focus on identifying the MDS codes resulting from puncturing and shortening. By using matroid theory and the relation between MDS codes and uniform minors, the list of all the possible uniform minors is derived. This list is used to improve the known non-asymptotic lower bound on the required field size of a maximally recoverable code.
引用
收藏
页码:1297 / 1300
页数:4
相关论文
共 50 条
  • [21] A COMPLETE CLASSIFICATION OF PARTIAL MDS (MAXIMALLY RECOVERABLE) CODES WITH ONE GLOBAL PARITY
    Horlemann-Trautmann, Anna-Lena
    Neri, Alessandro
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (01) : 69 - 88
  • [22] New bounds on the field size for maximally recoverable codes instantiating grid-like topologies
    Xiangliang Kong
    Jingxue Ma
    Gennian Ge
    Journal of Algebraic Combinatorics, 2021, 54 : 529 - 557
  • [23] New bounds on the field size for maximally recoverable codes instantiating grid-like topologies
    Kong, Xiangliang
    Ma, Jingxue
    Ge, Gennian
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (02) : 529 - 557
  • [24] Communication Cost for Updating Linear Functions When Message Updates Are Sparse: Connections to Maximally Recoverable Codes
    Prakash, N.
    Medard, Muriel
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (12) : 7557 - 7576
  • [25] Constructions of k-uniform and absolutely maximally entangled states beyond maximum distance codes
    Raissi, Zahra
    Teixido, Adam
    Gogolin, Christian
    Acin, Antonio
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [26] MAJOR MINORS AND POETRY CODES
    Ronchi, Valentino
    GRADIVA, 2020, (57): : 127 - 128
  • [27] MINORS OF THE GREAT AND CODES OF POETRY
    Senna, Paolo
    GRADIVA, 2020, (57): : 129 - 130
  • [28] Locally Recoverable Codes on Surfaces
    Salgado, Cecilia
    Varilly-Alvarado, Anthony
    Voloch, Jose Felipe
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (09) : 5765 - 5777
  • [29] Capacity of Locally Recoverable Codes
    Mazumdar, Arya
    2018 IEEE INFORMATION THEORY WORKSHOP (ITW), 2018, : 350 - 354
  • [30] Improved Maximally Recoverable LRCs Using Skew Polynomials
    Gopi, Sivakanth
    Guruswami, Venkatesan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (11) : 7198 - 7214