Plant disease identification using explainable 3D deep learning on hyperspectral images

被引:204
|
作者
Nagasubramanian, Koushik [1 ]
Jones, Sarah [2 ]
Singh, Asheesh K. [2 ,4 ]
Sarkar, Soumik [3 ,4 ,5 ]
Singh, Arti [2 ]
Ganapathysubramanian, Baskar [1 ,3 ,4 ]
机构
[1] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Agron, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[4] Iowa State Univ, Plant Sci Inst, Ames, IA 50011 USA
[5] Iowa State Univ, Dept Comp Sci, Ames, IA 50011 USA
关键词
Deep convolutional neural network; Charcoal rot disease; Soybean; Saliency map; Hyperspectral; CHARCOAL ROT; MACROPHOMINA-PHASEOLINA; RESISTANCE; FUNGUS;
D O I
10.1186/s13007-019-0479-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Hyperspectral imaging is emerging as a promising approach for plant disease identification. The large and possibly redundant information contained in hyperspectral data cubes makes deep learning based identification of plant diseases a natural fit. Here, we deploy a novel 3D deep convolutional neural network (DCNN) that directly assimilates the hyperspectral data. Furthermore, we interrogate the learnt model to produce physiologically meaningful explanations. We focus on an economically important disease, charcoal rot, which is a soil borne fungal disease that affects the yield of soybean crops worldwide. Results Based on hyperspectral imaging of inoculated and mock-inoculated stem images, our 3D DCNN has a classification accuracy of 95.73% and an infected class F1 score of 0.87. Using the concept of a saliency map, we visualize the most sensitive pixel locations, and show that the spatial regions with visible disease symptoms are overwhelmingly chosen by the model for classification. We also find that the most sensitive wavelengths used by the model for classification are in the near infrared region (NIR), which is also the commonly used spectral range for determining the vegetative health of a plant. Conclusion The use of an explainable deep learning model not only provides high accuracy, but also provides physiological insight into model predictions, thus generating confidence in model predictions. These explained predictions lend themselves for eventual use in precision agriculture and research application using automated phenotyping platforms.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] 3D hand pose estimation using RGBD images and hybrid deep learning networks
    Mohammad Mofarreh-Bonab
    Hadi Seyedarabi
    Behzad Mozaffari Tazehkand
    Shohreh Kasaei
    The Visual Computer, 2022, 38 : 2023 - 2032
  • [42] 3D hand pose estimation using RGBD images and hybrid deep learning networks
    Mofarreh-Bonab, Mohammad
    Seyedarabi, Hadi
    Mozaffari Tazehkand, Behzad
    Kasaei, Shohreh
    VISUAL COMPUTER, 2022, 38 (06): : 2023 - 2032
  • [43] Teeth and Jaw Segmentation from CBCT images Using 3D Deep Learning Models
    Abdo, Yassmina
    Mohamed, Nader
    Alsawaf, Maryam
    Elsaeed, Mohamed
    18th International Computer Engineering Conference, ICENCO 2022, 2022, : 25 - 30
  • [44] 3D segmentation of nasopharyngeal carcinoma from CT images using cascade deep learning
    Daoud, Bilel
    Morooka, Ken'ichi
    Kurazume, Ryo
    Leila, Farhat
    Mnejja, Wafa
    Daoud, Jamel
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 77
  • [45] Learning Action Images Using Deep Convolutional Neural Networks For 3D Action Recognition
    Thien Huynh-The
    Hua, Cam-Hao
    Kim, Dong-Seong
    2019 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2019,
  • [46] Deep learning approach to generate 3D civil infrastructure models using drone images
    Kwon, Ji-Hye
    Khudoyarov, Shekhroz
    Kim, Namgyu
    Heo, Jun-Haeng
    SMART STRUCTURES AND SYSTEMS, 2022, 30 (05) : 501 - 511
  • [47] A Federated Deep Learning Framework for 3D Brain MRI Images
    Fan, Zhipeng
    Su, Jianpo
    Gao, Kai
    Hu, Dewen
    Ling-Li Zeng
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [48] Explainable diagnosis based on retinal fundus images using deep learning
    Oruc, Ipek
    Delavari, Parsa
    Ozturan, Gulcenur
    Yilmaz, Ozgur
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [49] Lossy compression of hyperspectral images using shearlet transform and 3D SPECK
    Karami, A.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXI, 2015, 9643
  • [50] Hyperspectral images lossless compression using the 3D binary EZW algorithm
    Cheng, Kai-jen
    Dill, Jeffrey
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS XI, 2013, 8655