Clustering Based Active Learning for Biomedical Named Entity Recognition

被引:0
|
作者
Han, Xu [1 ]
Kwoh, Chee Keong [1 ]
Kim, Jung-jae [2 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Inst Infocomm Res, 1 Fusionopolis Way, Singapore 138632, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recognition and extraction of biomedical names is an essential task for the biomedical information extraction. However, the preparation of large annotated corpora hinders the training of the Named Entity Recognition (NER) systems. Active learning is reducing the needed manual annotation work in supervised learning task. In this work, we propose a novel clustering based active learning method for the biomedical NER task. We show that the underlying NER system using the proposed method outperforms those with other state of the art active learning methods, including density, Gibbs error and entropy based approaches, as well as the random selection. We compare variations of our proposed method and find the optimal design of the active learning method, which is to use the vector representation of named entities, and to select documents that are representative' and informative', as well as to use the Shared Nearest Neighbor (SNN) clustering approach. In particular, the optimal variant of the proposed method achieves a deficiency gain of 36.3% over the random selection.
引用
收藏
页码:1253 / 1260
页数:8
相关论文
共 50 条
  • [31] Faster biomedical named entity recognition based on knowledge distillation
    Hu B.
    Geng T.
    Deng G.
    Duan L.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2021, 61 (09): : 936 - 942
  • [32] Deep learning with word embeddings improves biomedical named entity recognition
    Habibi, Maryam
    Weber, Leon
    Neves, Mariana
    Wiegandt, David Luis
    Leser, Ulf
    BIOINFORMATICS, 2017, 33 (14) : I37 - I48
  • [33] A Kernel-Based Approach for Biomedical Named Entity Recognition
    Patra, Rakesh
    Saha, Sujan Kumar
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [34] Towards Bootstrapping Biomedical Named Entity Recognition using Reinforcement Learning
    Wang, Dongsheng
    Fan, Hongjie
    Liu, Junfei
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 778 - 784
  • [35] Two-stage learning algorithm for biomedical named entity recognition
    Che X.-J.
    Xu H.
    Pan M.-Y.
    Liu Q.-L.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (08): : 2380 - 2387
  • [36] Combining self learning and active learning for Chinese Named Entity Recognition
    Yao L.
    Sun C.
    Wang X.
    Wang X.
    Journal of Software, 2010, 5 (05) : 530 - 537
  • [37] Ensemble based Active Annotation for Named Entity Recognition
    Ekbal, Asif
    Saha, Sriparna
    Singh, Dhirendra
    2012 THIRD INTERNATIONAL CONFERENCE ON EMERGING APPLICATIONS OF INFORMATION TECHNOLOGY (EAIT), 2012, : 331 - 334
  • [38] Named Entity Recognition for Tamil Biomedical Documents
    Antony, Betina J.
    Mahalakshmi, G. S.
    2014 IEEE INTERNATIONAL CONFERENCE ON CIRCUIT, POWER AND COMPUTING TECHNOLOGIES (ICCPCT-2014), 2014, : 1571 - 1577
  • [39] A Genetic Approach for Biomedical Named Entity Recognition
    Ekbal, Asif
    Saha, Sriparna
    Sikdar, Utpal Kumar
    Hasanuzzaman, Md
    22ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2010), PROCEEDINGS, VOL 2, 2010, : 354 - +
  • [40] An Active Co-Training Algorithm for Biomedical Named-Entity Recognition
    Munkhdalai, Tsendsuren
    Li, Meijing
    Yun, Unil
    Namsrai, Oyun-Erdene
    Ryu, Keun Ho
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2012, 8 (04): : 575 - 588