A new method for gene synthesis and its high-level expression

被引:1
|
作者
Cao, Shi-shu [1 ]
Hu, Zhi-qiu [1 ]
机构
[1] Univ Calif Riverside, Dept Plant Pathol & Microbiol, Riverside, CA 92521 USA
关键词
Bioreactor; Citrobacter braakii; Phytase; Pichia pastoris; Thermostability; YEAST PICHIA-PASTORIS; PHYTASE GENE; CHEMICAL SYNTHESIS; MOLECULAR-CLONING; ESCHERICHIA-COLI; OVEREXPRESSION; OPTIMIZATION; PCR;
D O I
10.1016/j.mimet.2009.08.018
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
An optimized Citrobacter braakii phytase gene, appA-c, was chemically synthesized by oligonucleotides synthesis and over-lap PCR method. The appA-c gene encoding 423 amino acids was cloned into expression vector pPIC9 and transformed into methylotropic yeast Pichia pastoris. From about 2000 transformants, 400 transformants exhibiting phytase activity were obtained. One transformant showing the strongest phytase activity was selected for detailed analyses in 5 L bioreactor. Under control of the highly-inducible alcohol oxidase gene (AOX1) promoter, the transformant was able to secrete 3.85 mg/ml protein to the culture supernatant in about 110 h methanol induction, which comprises of 12,116 U ml(-1) phytase activity. Further characterization of the recombinant phytase was conducted. The optimal pH and temperature for this recombinant phytase was about 4.0 and 50 degrees C, respectively. Fe(3+), Zn(2+) and Cu(2+) could significantly inhibit the recombinant phytase enzyme activity. The specific activity of this recombinant enzyme was 3147 U mg(-1). The K(m) and V(max) values for sodium phytate were determined to be 0.5 mM and 3085 U/mg, respectively. To our knowledge, this is the first report of a chemically synthesized C braakii appA gene heterologous expression with the highest expression level and highest phytase activity achieved. The novel gene optimization and synthesis method can be applied to other related researches. Published by Elsevier B.V.
引用
收藏
页码:106 / 110
页数:5
相关论文
共 50 条
  • [21] Description method for high-level synthesis of histogram generation and their evaluation
    Yamasaki M.
    Yamawaki A.
    IEIE Transactions on Smart Processing and Computing, 2019, 8 (03): : 178 - 185
  • [22] NEW VECTORS FOR HIGH-LEVEL EXPRESSION OF RECOMBINANT PROTEINS IN BACTERIA
    HAKES, DJ
    DIXON, JE
    ANALYTICAL BIOCHEMISTRY, 1992, 202 (02) : 293 - 298
  • [23] Validating High-Level Synthesis
    Kundu, Sudipta
    Lerner, Sorin
    Gupta, Rajesh
    COMPUTER AIDED VERIFICATION, 2008, 5123 : 459 - 472
  • [24] OPTIMIZATIONS IN HIGH-LEVEL SYNTHESIS
    ROSENSTIEL, W
    MICROPROCESSING AND MICROPROGRAMMING, 1986, 18 (1-5): : 347 - 352
  • [25] HIGH-LEVEL SYNTHESIS - A TUTORIAL
    WU, ACH
    LIN, YL
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1995, E78D (03) : 209 - 218
  • [26] ALGORITHMS FOR HIGH-LEVEL SYNTHESIS
    PAULIN, PG
    KNIGHT, JP
    IEEE DESIGN & TEST OF COMPUTERS, 1989, 6 (06): : 18 - 31
  • [27] Introduction to high-level synthesis
    Gajski, Daniel D.
    Ramachandran, Loganath
    IEEE Design and Test of Computers, 1600, 11 (04): : 44 - 54
  • [28] A high-level synthesis method for weakly testable data baths
    Inoue, M
    Higashimura, T
    Noda, K
    Masuzawa, T
    Fujiwara, H
    SEVENTH ASIAN TEST SYMPOSIUM (ATS'98), PROCEEDINGS, 1998, : 40 - 45
  • [30] INTRODUCTION TO HIGH-LEVEL SYNTHESIS
    GAJSKI, DD
    RAMACHANDRAN, L
    IEEE DESIGN & TEST OF COMPUTERS, 1994, 11 (04): : 44 - 54