Highly accurate colorectal cancer prediction model based on Raman spectroscopy using patient serum

被引:15
|
作者
Ito, Hiroaki [1 ]
Uragami, Naoyuki [1 ]
Miyazaki, Tomokazu [2 ]
Yang, William [3 ]
Issha, Kenji [4 ]
Matsuo, Kai [1 ]
Kimura, Satoshi [5 ,6 ]
Arai, Yuji [7 ]
Tokunaga, Hiromasa [8 ,9 ]
Okada, Saiko [7 ]
Kawamura, Machiko [10 ]
Yokoyama, Noboru [1 ]
Kushima, Miki [11 ]
Inoue, Haruhiro [1 ]
Fukagai, Takashi [12 ]
Kamijo, Yumi [13 ]
机构
[1] Showa Univ, Ctr Digest Dis, Koto Toyosu Hosp, Tokyo 1358577, Japan
[2] JSR Corp, Div Res, Tokyo 1050021, Japan
[3] BaySpec Inc, San Jose, CA 95131 USA
[4] Fuji Tech Res Inc, Yokohama, Kanagawa 2206215, Japan
[5] Showa Univ, Northern Yokohama Hosp, Dept Lab Med, Yokohama, Kanagawa 2248503, Japan
[6] Showa Univ, Northern Yokohama Hosp, Cent Clin Lab, Yokohama, Kanagawa 2248503, Japan
[7] Showa Univ, Dept Clin Lab, Koto Toyosu Hosp, Tokyo 1358577, Japan
[8] Showa Univ Hosp, Dept Clin Lab, Tokyo 1428555, Japan
[9] BML Inc, Tokyo 1510051, Japan
[10] Saitama Canc Ctr, Dept Hematol, Inamachi, Saitama 3620806, Japan
[11] Showa Univ, Koto Toyosu Hosp, Dept Pathol, Tokyo 1358577, Japan
[12] Showa Univ, Koto Toyosu Hosp, Dept Urol, Tokyo 1358577, Japan
[13] Showa Univ, Koto Toyosu Hosp, Tokyo 1358577, Japan
关键词
Colorectal cancer; Raman spectroscopy; Machine learning; Blood; Serum; Diagnosis; NONINVASIVE DETECTION; CARCINOMA SEQUENCE; OPTICAL DIAGNOSIS; PROSTATE-CANCER; BLOOD-SERUM; LABEL-FREE; DISCRIMINATION; SPECTRA; TISSUE; CEA;
D O I
10.4251/wjgo.v12.i11.1311
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BACKGROUND Colorectal cancer (CRC) is an important disease worldwide, accounting for the second highest number of cancer-related deaths and the third highest number of new cancer cases. The blood test is a simple and minimally invasive diagnostic test. However, there is currently no blood test that can accurately diagnose CRC. AIM To develop a comprehensive, spontaneous, minimally invasive, label-free, bloodbased CRC screening technique based on Raman spectroscopy. METHODS We used Raman spectra recorded using 184 serum samples obtained from patients undergoing colonoscopies. Patients with malignant tumor histories as well as those with cancers in organs other than the large intestine were excluded. Consequently, the specific diseases of 184 patients were CRC (12), rectal neuroendocrine tumor (2), colorectal adenoma (68), colorectal hyperplastic polyp (18), and others (84). We used the 1064-nm wavelength laser for excitation. The power of the laser was set to 200 mW. RESULTS Use of the recorded Raman spectra as training data allowed the construction of a boosted tree CRC prediction model based on machine learning. Therefore, the generalized R-2 values for CRC, adenomas, hyperplastic polyps, and neuroendocrine tumors were 0.9982, 0.9630, 0.9962, and 0.9986, respectively. CONCLUSION For machine learning using Raman spectral data, a highly accurate CRC prediction model with a high R-2 value was constructed. We are currently planning studies to demonstrate the accuracy of this model with a large amount of additional data.
引用
收藏
页码:1311 / 1324
页数:14
相关论文
共 50 条
  • [31] Detection and evaluation of esophagus cancer by serum based on LIF-Raman spectroscopy
    Li, Xiaozhou
    Yang, Tianyue
    Li, Siqi
    Journal of Chemical and Pharmaceutical Research, 2014, 6 (03) : 1361 - 1365
  • [32] Cervical cancer detection based on serum sample surface enhanced Raman spectroscopy
    Sanchez-Rojo, S. A.
    Martinez-Zerega, B. E.
    Velazquez-Pedroza, E. F.
    Martinez-Espinosa, J. C.
    Torres-Gonzalez, L. A.
    Aguilar-Lemarroy, A.
    Jave-Suarez, L. F.
    Palomares-Anda, P.
    Gonzalez-Solis, J. L.
    REVISTA MEXICANA DE FISICA, 2016, 62 (03) : 213 - 218
  • [33] Breast cancer detection based on serum sample surface enhanced Raman spectroscopy
    Enrique Vargas-Obieta
    Juan Carlos Martínez-Espinosa
    Brenda Esmeralda Martínez-Zerega
    Luis Felipe Jave-Suárez
    Adriana Aguilar-Lemarroy
    José Luis González-Solís
    Lasers in Medical Science, 2016, 31 : 1317 - 1324
  • [34] Breast cancer chemotherapy treatment monitoring based on serum sample Raman spectroscopy
    L. G. De la Torre-Gutiérrez
    B. E. Martínez-Zérega
    D. O. Oseguera-Galindo
    A. Aguilar-Lemarroy
    L. F. Jave-Suárez
    L. A. Torres-González
    J. L. González-Solís
    Lasers in Medical Science, 2022, 37 : 3649 - 3659
  • [35] Breast cancer chemotherapy treatment monitoring based on serum sample Raman spectroscopy
    De la Torre-Gutierrez, L. G.
    Martinez-Zerega, B. E.
    Oseguera-Galindo, D. O.
    Aguilar-Lemarroy, A.
    Jave-Suarez, L. F.
    Torres-Gonzalez, L. A.
    Gonzalez-Solis, J. L.
    LASERS IN MEDICAL SCIENCE, 2022, 37 (09) : 3649 - 3659
  • [36] Breast Cancer Detection Based on Serum Sample Surface Enhanced Raman Spectroscopy
    Vargas-Obieta, E.
    Aguilar-Lemarroy, A.
    Jave-Suarez, L. F.
    Gonzalez-Solis, J. L.
    ADVANCES IN LASEROLOGY, 2015, : 55 - 58
  • [37] Breast cancer detection based on serum sample surface enhanced Raman spectroscopy
    Vargas-Obieta, Enrique
    Carlos Martinez-Espinosa, Juan
    Esmeralda Martinez-Zerega, Brenda
    Felipe Jave-Suarez, Luis
    Aguilar-Lemarroy, Adriana
    Luis Gonzalez-Solis, Jose
    LASERS IN MEDICAL SCIENCE, 2016, 31 (07) : 1317 - 1324
  • [38] Recurrence prediction in oral cancers: a serum Raman spectroscopy study
    Sahu, Aditi
    Nandakumar, Nikhila
    Sawant, Sharada
    Krishna, C. Murali
    ANALYST, 2015, 140 (07) : 2294 - 2301
  • [39] Model-based measurement of diffusion using Raman spectroscopy
    Bardow, A
    Marquardt, W
    Göke, V
    Koss, HJ
    Lucas, K
    AICHE JOURNAL, 2003, 49 (02) : 323 - 334
  • [40] Identification and characterization of the inhibitory effect of ART on colorectal cancer cells using Raman spectroscopy
    Chai, Senmao
    Sun, Xiaodong
    Fu, Chuhua
    Xu, Qianqian
    Ren, Zijing
    Xie, Lixia
    Ge, Jingjing
    Sang, Ming
    JOURNAL OF RAMAN SPECTROSCOPY, 2022, 53 (02) : 191 - 201