The cover time of sparse random graphs

被引:44
|
作者
Cooper, Colin
Frieze, Alan [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Univ London Goldsmiths Coll, Dept Math & Comp Sci, London SW14 6NW, England
关键词
random walk; random graphs; cover time;
D O I
10.1002/rsa.20151
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the cover time of a random walk on graphs G epsilon G(n,p), when p = c log n /n, c > 1. We prove that whp, the cover time, is asymptotic to c log (c/c-1) n log n. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [41] LARGE HOLES IN SPARSE RANDOM GRAPHS
    FRIEZE, AM
    JACKSON, B
    COMBINATORICA, 1987, 7 (03) : 265 - 274
  • [42] Hamiltonian completions of sparse random graphs
    Gamarnik, D
    Sviridenko, M
    DISCRETE APPLIED MATHEMATICS, 2005, 152 (1-3) : 139 - 158
  • [43] FLOODING IN WEIGHTED SPARSE RANDOM GRAPHS
    Amini, Hamed
    Draief, Moez
    Lelarge, Marc
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 1 - 26
  • [44] Sparse random graphs: Eigenvalues and eigenvectors
    Tran, Linh V.
    Vu, Van H.
    Wang, Ke
    RANDOM STRUCTURES & ALGORITHMS, 2013, 42 (01) : 110 - 134
  • [45] Uniformly Random Colourings of Sparse Graphs
    Hurley, Eoin
    Pirot, Francois
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 1357 - 1370
  • [46] Sparse Quasi-Random Graphs
    Fan Chung
    Ronald Graham
    Combinatorica, 2002, 22 : 217 - 244
  • [47] Sparse Graphs: Metrics and Random Models
    Bollobas, Bela
    Riordan, Oliver
    RANDOM STRUCTURES & ALGORITHMS, 2011, 39 (01) : 1 - 38
  • [48] PUSH IS FAST ON SPARSE RANDOM GRAPHS
    Meier, Florian
    Peter, Ueli
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (01) : 29 - 49
  • [49] The largest hole in sparse random graphs
    Draganic, Nemanja
    Glock, Stefan
    Krivelevich, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (04) : 666 - 677
  • [50] A note on coloring sparse random graphs
    Sommer, Christian
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3381 - 3384