An investigation on the usage of different supercritical fluids in parabolic trough solar collector

被引:15
|
作者
Zaharil, Hafiz Aman [1 ]
机构
[1] Univ Malaya, UM Power Energy Dedicated Adv Ctr UMPEDAC, Higher Inst Ctr Excellence HICoE, Wisma R&D, Level 4,Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia
关键词
Parabolic trough; Solar energy; Energy; Exergy; Supercritical fluid; Heat transfer fluid;
D O I
10.1016/j.renene.2020.12.090
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The temperature limitation of thermal oil which limits the overall efficiency of a thermodynamic cycle has propelled the study of the usage of supercritical fluid in parabolic trough solar collector (PTSC) due to its ability to operate at higher temperature levels. sC0(2) is the most popular supercritical fluid currently studied in PTSC, but there are some other supercritical fluids have been used in industrial applications yet rarely studied in PTSC. In this research, the performance of three different supercritical fluids namely, water (sH(2)O), nitrogen (sN2); Sulphur hexafluoride (sSF(6)) along with carbon dioxide (sCO(2)) was studied and compared. A 1-D mathematical model was developed, validated, and it was solved by the commercial software EES. The results showed that the energetic performance of water is superior to the rest of the fluids at common inlet temperatures with sN(2) showing comparable performance to sCO(2) and sSF(6) showing consistently weaker performance than the rest. The exergetic performance of these fluids showed that sH(2)O and sSF(6) are promising alternatives to sCO(2). All fluids showed maximum exergetic efficiency at an inlet temperature of 750K with the respective maximum for sH(2)O, sSF(6), sCO(2) and sN(2) of 46.46%, 46.24%, 46.11% and 45.76%. Comparison of these supercritical fluids to Therminol VP-1 and molten salts also showed promising potential. H2O is the best supercritical fluid for usage in thermal storage at 650K where it has thermal storage energy density (TSED) of around 165% higher than the highest value of molten salt's TSED. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:676 / 691
页数:16
相关论文
共 50 条
  • [31] Performance analysis of a parabolic solar trough collector with multiple revolving tubes for ternary nanofluid and different base fluids
    Chakraborty, Oveepsa
    Nath, Sourav
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2025,
  • [32] Study on Solar Parabolic Trough Collector with Different Copper Absorber Tubes
    Haran, V. Hari
    Venkataramaiah, P.
    INTELLIGENT MANUFACTURING AND ENERGY SUSTAINABILITY, ICIMES 2019, 2020, 169 : 271 - 278
  • [33] Optimization of parabolic trough solar collector system
    Odeh, SD
    Morrison, GL
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2006, 30 (04) : 259 - 271
  • [34] Design of Solar Parabolic Trough Collector by FEM
    Tao, Lei
    Ling, Xiang
    Zhu, Yuezhao
    DETC 2008: PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATIONAL IN ENGINEERING CONFERENCE, VOL 3, PTS A AND B: 28TH COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2009, : 375 - 380
  • [35] Optical simulation of a parabolic solar trough collector
    Grena, Roberto
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2010, 29 (01) : 19 - 36
  • [36] Dynamic performance of parabolic trough solar collector
    Jie, Ji
    Han Chongwei
    Wei, He
    Gang, Pei
    PROCEEDINGS OF ISES SOLAR WORLD CONGRESS 2007: SOLAR ENERGY AND HUMAN SETTLEMENT, VOLS I-V, 2007, : 750 - 754
  • [37] Performance simulation of a parabolic trough solar collector
    Huang, Weidong
    Hu, Peng
    Chen, Zeshao
    SOLAR ENERGY, 2012, 86 (02) : 746 - 755
  • [38] A detailed review on solar parabolic trough collector
    Upadhyay, Bhargav H.
    Patel, Amitkumar J.
    Ramana, P. V.
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2019, 43 (01) : 176 - 196
  • [39] Exergetic Optimization of a Parabolic Trough Solar Collector
    Gunay, Ceyda
    Erdogan, Anil
    Colpan, C. Ozgur
    ROLE OF EXERGY IN ENERGY AND THE ENVIRONMENT, 2018, : 677 - 689
  • [40] A cylindrical insert for parabolic trough solar collector
    Bellos, Evangelos
    Daniil, Ilias
    Tzivanidis, Christos
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (05) : 1846 - 1876