Multi-model SAR image despeckling

被引:0
|
作者
Wang, C [1 ]
Wang, RS [1 ]
机构
[1] Natl Univ Def Technol, ATR Lab, Sch Elect Sci & Engn, Changsha, Peoples R China
关键词
D O I
10.1049/el:20020994
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multi-model despeckling approach for SAR image is presented. The chi-squared test is used to segment the image into homogeneous and heterogeneous regions. Then, the heterogeneous regions are separated into subregions, each of which consists of the points with same edge orientations. Homogeneous regions and the separated subregions are despeckled according to their characteristics. Experimental results are reported.
引用
收藏
页码:1425 / 1426
页数:2
相关论文
共 50 条
  • [21] Improved bilateral filtering for SAR image despeckling
    Zhang, W. G.
    Zhang, Q.
    Yang, C. S.
    ELECTRONICS LETTERS, 2011, 47 (04) : 286 - +
  • [22] SAR image despeckling via bilateral filtering
    Zhang, W. G.
    Liu, F.
    Jiao, L. C.
    ELECTRONICS LETTERS, 2009, 45 (15) : 783 - 784
  • [23] Contrastive learning for real SAR image despeckling
    Fang, Yangtian
    Liu, Rui
    Peng, Yini
    Guan, Jianjun
    Li, Duidui
    Tian, Xin
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 218 : 376 - 391
  • [24] Wavelet-Based Despeckling for SAR Image Combing HMT Model with GMRF Model
    Chen, Guozhong
    Liu, Xingzhao
    2008 IEEE RADAR CONFERENCE, VOLS. 1-4, 2008, : 202 - 206
  • [25] SAR Image despeckling via sparse representation
    Wang Zhongmei
    Yang Xiaomei
    Zheng Liang
    EARTH OBSERVING MISSIONS AND SENSORS: DEVELOPMENT, IMPLEMENTATION, AND CHARACTERIZATION III, 2014, 9264
  • [26] Video SAR Image Despeckling by Unsupervised Learning
    Huang, Xuejun
    Xu, Zhong
    Ding, Jinshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10151 - 10160
  • [27] TRANSFORMER-BASED SAR IMAGE DESPECKLING
    Perera, Malsha V.
    Bandara, Wele Gedara Chaminda
    Valanarasu, Jeya Maria Jose
    Patel, Vishal M.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 751 - 754
  • [28] SAR IMAGE SIMULATION FOR THE ASSESSMENT OF DESPECKLING TECHNIQUES
    Di Martino, Gerardo
    Poderico, Mariana
    Poggi, Giovanni
    Riccio, Daniele
    Verdoliva, Luisa
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1797 - 1800
  • [29] Impact of Method Noise on SAR Image Despeckling
    Singh, Prabhishek
    Shree, Raj
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND WEB ENGINEERING, 2020, 15 (01) : 52 - 63
  • [30] SAR image despeckling using deep CNN
    Passah, Alicia
    Amitab, Khwairakpam
    Kandar, Debdatta
    IET IMAGE PROCESSING, 2021, 15 (06) : 1285 - 1297