Computationally determined existence and stability of transverse structures. I. Periodic optical patterns

被引:17
|
作者
Harkness, GK [1 ]
Firth, WJ [1 ]
Oppo, GL [1 ]
McSloy, JM [1 ]
机构
[1] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevE.66.046605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a Fourier-transform based, computer-assisted, technique to find the stationary solutions of a model describing a saturable absorber in a driven optical cavity. We illustrate the method by finding essentially exact hexagonal and roll solutions as a function of wave number and of the input pump. The method, which is widely applicable, also allows the determination of the domain of stability (Busse balloon) of the pattern, and sheds light on the mechanisms responsible for any instability. To show the usefulness of our numerical technique, we describe cracking and shrinking patches of patterns in a particular region of parameter space.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Modified genetic algorithm to model crystal structures. I. Benzene, naphthalene and anthracene
    Bazterra, VE
    Ferraro, MB
    Facelli, JC
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (14): : 5984 - 5991
  • [32] Stable all-optical limiting in nonlinear periodic structures. II. Computations
    Pelinovsky, D
    Sargent, EH
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (08) : 1873 - 1889
  • [33] A formalism for scattering of complex composite structures. I. Applications to branched structures of asymmetric sub-units
    Svaneborg, Carsten
    Pedersen, Jan Skov
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (10):
  • [34] In silico predicted robustness of viroids RNA secondary structures.: I.: The effect of single mutations
    Sanjuan, Rafael
    Forment, Javier
    Elena, Santiago F.
    MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (07) : 1427 - 1436
  • [35] Existence and stability of periodic contrast structures in the reaction-advection-diffusion problem
    N. N. Nefedov
    E. I. Nikulin
    Russian Journal of Mathematical Physics, 2015, 22 : 215 - 226
  • [36] Refined Model of Thermoelastoplastic Bending of Layered Plates with Regular Structures. I. Statement of the Problem
    Yankovskii А.P.
    Journal of Mathematical Sciences, 2020, 249 (3) : 446 - 461
  • [37] STRESS STATE AND DEFORMATION MECHANISM OF POLYCRYSTALLINE STRUCTURES. PHOTOELASTIC MODEL ANALYSIS - PART I.
    Berka, Ladislav
    Javornicky, Jan
    Kratena, Jindrich
    Acta Technica CSAV (Ceskoslovensk Akademie Ved), 1985, 30 (02): : 147 - 160
  • [38] DISPERSION RELATIONS FOR COMPOSITE STRUCTURES. PART I. BASIC ASSUMPTIONS AND REALTIONSHIPS FOR MONOCLINIC LAMINA
    Barski, Marek
    Stawiarski, Adam
    Chwal, Malgorzata
    COMPOSITES THEORY AND PRACTICE, 2016, 16 (03): : 125 - 131
  • [39] Existence and Stability of Periodic Contrast Structures in the Reaction-Advection-Diffusion Problem
    Nefedov, N. N.
    Nikulin, E. I.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2015, 22 (02) : 215 - 226
  • [40] The pair-functional method for direct solution of molecular structures. I. Statistical principles
    McLachlan, AD
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2001, 57 : 125 - 139