Optimal control of a basic model of oncolytic virotherapy

被引:2
|
作者
Abu-Rqayiq, Abdullah [1 ]
Alayed, Haneen [2 ]
Zannon, Mohammad [3 ]
机构
[1] Texas A&M Univ, Dept Math & Stat, Corpus Christi, TX 78412 USA
[2] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
[3] Tafilah Tech Univ, Dept Math & Stat, At Tafilah, Jordan
来源
关键词
Oncolytic virotherapy; optimal control; tumor cells; hamiltonian; DEFINING CONDITIONS; VIRUS;
D O I
10.22436/jmcs.024.02.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper applies an optimal control approach to study the dynamics of a basic Oncolytic Virotherapy model. This study applies mathematical modeling based on an established basic oncolytic virotherapy model for tumor growth. Choosing an appropriate control strategy is essential to reduce the cost of the therapy. By applying optimal control theory, we seek to minimize the cost of virotherapy and reduce the load of tumor cells. The existence of optimal control is proved. State solution given an optimal strategy and the optimal control is determined. Numerical simulation is carried out to visualize and support our results.
引用
收藏
页码:119 / 126
页数:8
相关论文
共 50 条
  • [31] Cellular genetic tools to control oncolytic adenoviruses for virotherapy of cancer
    Nettelbeck, Dirk M.
    JOURNAL OF MOLECULAR MEDICINE-JMM, 2008, 86 (04): : 363 - 377
  • [32] Cellular genetic tools to control oncolytic adenoviruses for virotherapy of cancer
    Dirk M. Nettelbeck
    Journal of Molecular Medicine, 2008, 86 : 363 - 377
  • [33] BOUNDEDNESS AND STABILIZATION IN A HAPTOTAXIS MODEL OF ONCOLYTIC VIROTHERAPY WITH NONLINEAR SENSITIVITY
    Liu, Fuping
    Zheng, Pan
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (03): : 644 - 658
  • [34] Global boundedness in an oncolytic virotherapy model with generalized logistic source
    Wen, Qiang
    Liu, Bin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [35] Global boundedness in an oncolytic virotherapy model with generalized logistic source
    Qiang Wen
    Bin Liu
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [36] Natural Killer Cells Recruitment in Oncolytic Virotherapy: A Mathematical Model
    Senekal, Noma Susan
    Mahasa, Khaphetsi Joseph
    Eladdadi, Amina
    de Pillis, Lisette
    Ouifki, Rachid
    BULLETIN OF MATHEMATICAL BIOLOGY, 2021, 83 (07)
  • [37] Bifurcation and Stability of a Mathematical Model for Tumor Growth with Oncolytic Virotherapy
    Chen, Hong-Bing
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (14):
  • [38] Asymptotic stability of spatial homogeneity in a haptotaxis model for oncolytic virotherapy
    Tao, Youshan
    Winkler, Michael
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (01) : 81 - 101
  • [39] Oncolytic virotherapy: the questions and the promise
    Aurelian, Laure
    ONCOLYTIC VIROTHERAPY, 2013, 2 : 19 - 29
  • [40] The combination therapy of oncolytic virotherapy
    Wang, Yue
    Zhu, Mengying
    Chi, Huanyu
    Liu, Yang
    Yu, Guilin
    FRONTIERS IN PHARMACOLOGY, 2024, 15