Treatment of rat spinal cord injury with a Rho-kinase inhibitor and bone marrow stromal cell transplantation

被引:33
|
作者
Furuya, Takeo [1 ]
Hashimoto, Masayuki [1 ]
Koda, Masao [1 ]
Okawa, Akihiko [1 ]
Murata, Atsushi [1 ]
Takahashi, Kazuhisa [1 ]
Yamashita, Toshihide [2 ]
Yamazaki, Masashi [1 ]
机构
[1] Chiba Univ, Grad Sch Med, Dept Orthopaed Surg, Chuo Ku, Chiba 2608670, Japan
[2] Osaka Univ, Grad Sch Med, Dept Mol Neurosci, Suita, Osaka 5650871, Japan
关键词
Spinal cord injury; Rho-kinase inhibitor; Fasudil; Bone marrow stromal cell (BMSC); Cell transplantation; CHONDROITIN SULFATE PROTEOGLYCANS; PROMOTE FUNCTIONAL RECOVERY; CENTRAL-NERVOUS-SYSTEM; STEM-CELLS; ADULT-RAT; IN-VITRO; AXONAL REGENERATION; NEURONAL DEATH; SCHWANN-CELLS; NEURAL CELLS;
D O I
10.1016/j.brainres.2009.07.087
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In light of reports that the administration of fasudil, a Rho-kinase inhibitor, improved rats locomotor abilities following spinal cord injury, we hypothesized that combining fasudil with another type of therapy, such as stem cell transplantation, might further improve the level of locomotor recovery. Bone marrow stromal cells (BMSCs) are readily available for stem cell therapy. in the present study, we examined whether fasudil combined with BMSC transplantation would produce synergistic effects on recovery. Adult female Sprague-Dawley rats were subjected to spinal cord contusion injury at the T10 vertebral level using an IH impactor (200 Kdyn). Immediately after contusion, they were administrated fasudil intrathecally for 4 weeks. GFP rat-derived BMSCs (2.5x10(6)) were injected into the lesion site 14 days after contusion. Locomotor recovery was assessed for 9 weeks with BBB scoring. Sensory tests were conducted at 8 weeks. Biotinylated dextran amine (BDA) was injected into the sensory-motor cortex at 9 weeks. In addition to an untreated control group, the study also included a fasudil-only group and a BMSC-only group in order to compare the effects of combined therapy vs. single-agent therapy. Animals were perfused transcardially 11 weeks after contusion, and histological examinations were performed. The combined therapy group showed statistically better locomotor recovery than the untreated control group at 8 and 9 weeks after contusion. Neither of the two single-agent treatments improved open field locomotor function. Sensory tests showed no statistically significant difference by treatment. Histological and immunohistochemical studies provided some supporting evidence for better locomotor recovery following combined therapy. The average area of the cystic cavity was significantly smaller in the fasudil+BMSC group than in the control group. The number of 5-HT nerve fibers was significantly higher in the fasudil+BMSC group than in the control group on the rostral side of the lesion site. BDA-labeled fibers on the caudal side of the lesion epicenter were observed only in the fasudil+BMSC group. on the other hand, only small numbers of GFP-labeled grafted cells remained 9 weeks after transplantation, and these were mainly localized at the site of injection. Double immunofluorescence studies showed no evidence of differentiation of grafted BMSCs into glial cells or neurons. The Rho-kinase inhibitor fasudil combined with BMSC transplantation resulted in better locomotor recovery than occurred in the untreated control group. However, the data failed to demonstrate significant synergism from combined therapy compared with the levels of recovery following single-agent treatment. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:192 / 202
页数:11
相关论文
共 50 条
  • [41] Co-transplantation of Schwann and Bone Marrow Stromal Cells Promotes Locomotor Recovery in the Rat Contusion Model of Spinal Cord Injury
    Joghataei, Mohammad Taghi
    Bakhtiari, Mehrdad
    Pourheydar, Bagher
    Mehdizadeh, Mehdi
    Faghihi, Abolfazt
    Mehraein, Fereshteh
    Behnam, Babak
    Pirhajati, Vahid
    YAKHTEH, 2010, 12 (01): : 7 - +
  • [42] Neuroprotective effects of pre- and post-treatment with fasudil (a Rho-kinase inhibitor) in a rat transient spinal cord ischemia-reperfusion model
    Ohbuchi, M.
    Kimura, T.
    Nishikawa, T.
    Fukuda, M.
    EUROPEAN JOURNAL OF ANAESTHESIOLOGY, 2014, 31 : 109 - 110
  • [43] Functional recovery after transplantation of bone marrow-derived human mesenchymal stromal cells in a rat model of spinal cord injury
    Pal, Rakhi
    Gopinath, Chaitanya
    Rao, Nagesh M.
    Banerjee, Poulomi
    Krishnamoorthy, Venkatesh
    Venkataramana, Neelam K.
    Totey, Satish
    CYTOTHERAPY, 2010, 12 (06) : 792 - 806
  • [44] Anti-inflammatory Mechanism of Bone Marrow Mesenchymal Stem Cell Transplantation in Rat Model of Spinal Cord Injury
    Dongji Han
    Chenglong Wu
    Qiuju Xiong
    Ling Zhou
    Yuke Tian
    Cell Biochemistry and Biophysics, 2015, 71 : 1341 - 1347
  • [45] Anti-inflammatory Mechanism of Bone Marrow Mesenchymal Stem Cell Transplantation in Rat Model of Spinal Cord Injury
    Han, Dongji
    Wu, Chenglong
    Xiong, Qiuju
    Zhou, Ling
    Tian, Yuke
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2015, 71 (03) : 1341 - 1347
  • [46] Rho-kinase Inhibitor Assisted Cell Therapy for the Treatment of Corneal Endothelial Decompensation
    Okumura, Naoki
    JOURNAL OF OCULAR PHARMACOLOGY AND THERAPEUTICS, 2023, 39 (08) : A14 - A14
  • [47] Hematopoietic stem cell and marrow stromal cell for spinal cord injury in mice
    Koda, M
    Okada, S
    Nakayama, T
    Koshizuka, S
    Kamada, T
    Nishio, Y
    Someya, Y
    Yoshinaga, K
    Okawa, A
    Moriya, H
    Yamazaki, M
    NEUROREPORT, 2005, 16 (16) : 1763 - 1767
  • [48] Rho-Kinase Inhibitor Ripasudil suppresses dendritic cell maturation in murine corneal transplantation
    Miura, Maria
    Inomata, Takenori
    Okano, Mikiko
    Fujimoto, Keiichi
    Okumura, Yuichi
    Shiang, Tina
    Funaki, Toshinari
    Murakami, Akira
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [49] Safety and possible outcome assessment of autologous Schwann cell and bone marrow mesenchymal stromal cell co-transplantation for treatment of patients with chronic spinal cord injury
    Yazdani, Saeed Oraee
    Hafizi, Maryam
    Zali, Ali-Reza
    Atashi, Amir
    Ashrafi, Farzad
    Seddighi, Amir-Saeed
    Soleimani, Masoud
    CYTOTHERAPY, 2013, 15 (07) : 782 - 791
  • [50] Bone marrow stromal cell transplantation preserves gammaaminobutyric acid receptor function in the injured spinal cord
    Yano, Shunsuke
    Kuroda, Satoshi
    Shichinohe, Hideo
    Seki, Toshitaka
    Ohnishi, Takako
    Tamagami, Hiroshi
    Hida, Kazutoshi
    Iwasaki, Yoshinobu
    JOURNAL OF NEUROTRAUMA, 2006, 23 (11) : 1682 - 1692