Monotone iterative technique for Hilfer fractional evolution equations with nonlocal conditions

被引:6
|
作者
Gou, Haide [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Lower and upper solution; Mild solutions; Hilfer fractional derivative; Noncompact measure; EXISTENCE;
D O I
10.1016/j.bulsci.2021.102946
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article focuses on the existence of extremal mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions in an ordered Banach spaces E. By using a monotone iterative method in the presence of lower and upper solutions, we obtain some existence results of extremal mild solutions for Hilfer fractional evolution equations involving noncompact semigroups. Finally, an example is given to illustrate the effectiveness of the abstract results. (C) 2021 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS AND GENERALIZED HILFER FRACTIONAL DERIVATIVE
    Wahash, H. A.
    Abdo, M. S.
    Panchal, S. K.
    UFA MATHEMATICAL JOURNAL, 2019, 11 (04): : 151 - 170
  • [22] Monotone iterative technique for nonlocal fractional differential equations with finite delay in a Banach space
    Kamaljeet
    Bahuguna, Dhirendra
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (09) : 1 - 16
  • [23] MONOTONE ITERATIVE METHOD FOR RETARDED EVOLUTION EQUATIONS INVOLVING NONLOCAL AND IMPULSIVE CONDITIONS
    Zhang, Xuping
    Chen, Pengyu
    Li, Yongxiang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [24] Monotone Iterative Technique for Nonlocal Impulsive Finite Delay Differential Equations of Fractional Order
    Jeet, Kamal
    Sukavanam, N.
    Bahuguna, D.
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2022, 30 (04) : 801 - 816
  • [25] Monotone Iterative Technique for Nonlocal Impulsive Finite Delay Differential Equations of Fractional Order
    Kamal Jeet
    N. Sukavanam
    D. Bahuguna
    Differential Equations and Dynamical Systems, 2022, 30 : 801 - 816
  • [26] Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions
    Pengyu Chen
    Yongxiang Li
    Zeitschrift für angewandte Mathematik und Physik, 2014, 65 : 711 - 728
  • [27] Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions
    Chen, Pengyu
    Li, Yongxiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (04): : 711 - 728
  • [28] Approximation Technique for Fractional Evolution Equations with Nonlocal Integral Conditions
    Chen, Pengyu
    Zhang, Xuping
    Li, Yongxiang
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (06)
  • [29] Approximation Technique for Fractional Evolution Equations with Nonlocal Integral Conditions
    Pengyu Chen
    Xuping Zhang
    Yongxiang Li
    Mediterranean Journal of Mathematics, 2017, 14
  • [30] Monotone iterative technique for weighted fractional semilinear evolution equations in Banach spaces
    Benyoub, Mohammed
    Khuddush, Mahammad
    Ozyurt, Selma Gulyaz
    FILOMAT, 2024, 38 (22) : 7859 - 7870