Trap effect of triplet excitons on magnetoresistance in organic devices

被引:3
|
作者
Yang, Fujiang [1 ]
Zhang, Gaiyan [1 ]
Meng, Ruixuan [1 ]
Gao, Kun [1 ]
Xie, Shijie [1 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
关键词
Organic bipolar devices; Magnetoresistance; Triplet exciton; Hopping; ROOM-TEMPERATURE; DIODES; SEMICONDUCTORS; MOBILITY;
D O I
10.1016/j.orgel.2015.06.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In an organic bipolar device, injected electrons and holes can form spin singlet and triplet excitons, which are manipulated by an applied magnetic field. We suppose that the localized intra-molecule triplet exciton has a blocking effect on charge carrier transport by assuming that the intra-molecule triplet exciton can increase the on-site binding and make the electron states more localized. By considering the magnetic field-dependent transition between singlet and triplet excitons, from the master equation based on the hopping mechanism, we calculate the magnetoresistance (MR) in organic devices and compare the results with some experimental data. Our research reveals the importance of hyperfine interaction in organic magnetoresistance (OMAR). Especially, our investigation indicates that a bipolar organic device should have a larger MR value than a unipolar one due to the trap effect of triplet excitons on hopping electrons or holes, which is confirmed by some experimental observations. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 15
页数:4
相关论文
共 50 条
  • [41] Diffusion of triplet excitons in an operational organic light-emitting diode
    Lebental, M.
    Choukri, H.
    Chenais, S.
    Forget, S.
    Siove, A.
    Geffroy, B.
    Tutis, E.
    PHYSICAL REVIEW B, 2009, 79 (16)
  • [42] Triplet excitons: improving exciton diffusion length for enhanced organic photovoltaics
    Luppi, Bruno T.
    Majak, Darren
    Gupta, Manisha
    Rivard, Eric
    Shankar, Karthik
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (06) : 2445 - 2463
  • [43] The effect of deuteration on organic magnetoresistance
    Rolfe, N. J.
    Heeney, M.
    Wyatt, P. B.
    Drew, A. J.
    Kreouzis, T.
    Gillin, W. P.
    SYNTHETIC METALS, 2011, 161 (7-8) : 608 - 612
  • [44] Modelling of organic magnetoresistance as a function of temperature using the triplet polaron interaction
    Zhang, Sijie
    Drew, A. J.
    Kreouzis, T.
    Gillin, W. P.
    SYNTHETIC METALS, 2011, 161 (7-8) : 628 - 631
  • [45] Organic magnetoresistance and spin diffusion in organic semiconductor thin film devices
    Wohlgenannt, Markus
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2012, 6 (06): : 229 - 242
  • [46] Magnetoresistance in organic spintronic devices: the role of nonlinear effects
    Shumilin, A. V.
    Kabanov, V. V.
    Dediu, V. A.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [47] Separating positive and negative magnetoresistance in organic semiconductor devices
    Bloom, F. L.
    Wagemans, W.
    Kemerink, M.
    Koopmans, B.
    PHYSICAL REVIEW LETTERS, 2007, 99 (25)
  • [48] Large magnetoresistance at room temperature in organic semiconductor devices
    Mermer, Ö
    Wohlgenannt, M
    Francis, TL
    Veeraraghavan, G
    IEEE TRANSACTIONS ON MAGNETICS, 2005, 41 (10) : 3682 - 3684
  • [49] Condensation of Excitons in a Trap
    High, A. A.
    Leonard, J. R.
    Remeika, M.
    Butov, L. V.
    Hanson, M.
    Gossard, A. C.
    NANO LETTERS, 2012, 12 (05) : 2605 - 2609
  • [50] Magnetic trap for excitons
    Christianen, PCM
    Piazza, F
    Lok, JGS
    Maan, JC
    van der VLeuten, W
    PHYSICA B-CONDENSED MATTER, 1998, 249 : 624 - 627