Microneedles and transdermal drug delivery

被引:26
|
作者
Kalluri, H. [1 ]
Banga, A. K. [1 ]
机构
[1] Mercer Univ, Coll Pharm & Hlth Sci, Dept Pharmaceut Sci, Atlanta, GA 30341 USA
关键词
Microneedles; Transdermal delivery; Physical enhancement; Stratum corneum; Iontophoresis; Microparticles; HUMAN STRATUM-CORNEUM; ARRAY PATCH SYSTEM; IN-VIVO ASSESSMENT; SILICON MICRONEEDLES; COATED MICRONEEDLES; HOLLOW MICRONEEDLES; MICROFABRICATED MICRONEEDLES; POLYMER MICRONEEDLES; MALTOSE MICRONEEDLES; INSULIN DELIVERY;
D O I
10.1016/S1773-2247(09)50065-2
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Transdermal delivery has become a popular route of drug delivery in recent years. However, permeation of drugs through skin is limited to small lipophilic molecules. Microneedle technology involves the creation of micron-sized channels in the skin, which can allow the delivery of hydrophilic molecules including large proteins which do not pass the skin barrier passively. Microneedles can be manufactured in different geometries from various materials such as silicon, glass, sugars and polymers and this technology has been shown to effectively increase the permeation rates of a wide range of therapeutic compounds, including proteins, at several studies on animal models and humans. Combination with other techniques such as iontophoresis mid sonophoresis may result in synergistic effects. New products involving microneedle technology are currently being developed in the industry and the prospects are highly promising.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 50 条
  • [11] Progress of Polymer Microneedles on Transdermal Drug Delivery
    Zeng, Zhi-yong
    Jiang, Guo-hua
    Liu, Tian-qi
    Zhang, Xue-ya
    Sun, Yan-fang
    ACTA POLYMERICA SINICA, 2022, 53 (08): : 876 - 893
  • [12] Hydrolytic microneedles as transdermal drug delivery system
    Miyano, T.
    Miyachi, T.
    Okanishi, T.
    Todo, H.
    Sugibayashi, K.
    Uernura, T.
    Takano, N.
    Konishi, S.
    TRANSDUCERS '07 & EUROSENSORS XXI, DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2007,
  • [13] Polymeric microneedles for controlled transdermal drug delivery
    Singh, Parbeen
    Carrier, Andrew
    Chen, Yongli
    Lin, Sujing
    Wang, Jinlin
    Cui, Shufen
    Zhang, Xu
    JOURNAL OF CONTROLLED RELEASE, 2019, 315 : 97 - 113
  • [14] Controllable coating of microneedles for transdermal drug delivery
    Chen, Jianmin
    Qiu, Yuqin
    Zhang, Suohui
    Yang, Guozhong
    Gao, Yunhua
    DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2015, 41 (03) : 415 - 422
  • [15] Microneedles for enhanced transdermal and intraocular drug delivery
    Moffatt, Kurtis
    Wang, Yujing
    Singh, Thakur Raghu Raj
    Donnelly, Ryan F.
    CURRENT OPINION IN PHARMACOLOGY, 2017, 36 : 14 - 21
  • [16] Microneedles for transdermal drug delivery: a systematic review
    Dharadhar, Saili
    Majumdar, Anuradha
    Dhoble, Sagar
    Patravale, Vandana
    DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2019, 45 (02) : 188 - 201
  • [17] Marine polymeric microneedles for transdermal drug delivery
    Moniz, Tania
    Costa Lima, Sofia A.
    Reis, Salette
    CARBOHYDRATE POLYMERS, 2021, 266 : 118098
  • [18] Research of Polymeric Microneedles for Transdermal Drug Delivery
    Zhao, Xiao
    Li, Xinfang
    Zhang, Peng
    Wang, Youxiang
    PROGRESS IN CHEMISTRY, 2017, 29 (12) : 1518 - 1525
  • [19] Zeolite microneedles for controlled transdermal drug delivery
    Poon, Ho Yee
    Wong, Wai Kit
    Chau, Li Yin
    Han, Wei
    Kwan, Siu Ming
    Lee, Thomas Ming Hung
    Chow, Albert Hee Lum
    Yeung, King Lun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [20] Fabrication of polystyrene microneedles for transdermal drug delivery
    Luangweera, W.
    Jiruedee, S.
    Pimpin, A.
    Rattanasumawong, C.
    Palaga, T.
    Srituravanich, W.
    Patoomvasna, K.
    Sookyu, B.
    COMPUTING, CONTROL, INFORMATION AND EDUCATION ENGINEERING, 2015, : 741 - 744