Sensitivity relations for the Mayer problem of optimal control

被引:0
|
作者
Cannarsa, Piermarco [1 ]
Frankowska, Helesne [2 ]
Scarinci, Teresa [1 ,3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[2] UnivParis Diderot, Univ Paris 06, Sorbonne Univ, CNRS,IMJ PRG,UMR 7586,Sorbonne Paris Cite, F-75252 Paris, France
[3] Univ Paris 06, Sorbonne Univ, F-75005 Paris, France
关键词
STATE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sensitivity relations in optimal control refer to the interpretation of the gradients of the value function in terms of the costate arc and the Hamiltonian evaluated along an extremal. In general, the value function is not differentiable and for this reason its gradients have to be replaced by generalized differentials. In this paper we prove such sensitivity relations for the Mayer optimal control problem with dynamics described by a differential inclusion. If the associated Hamiltonian is semiconvex with respect to the state variable, then we show that sensitivity relations hold true for any dual arc associated to an optimal solution, instead of more traditional statements about the existence of a dual arc satisfying such relations. Furthermore, several applications are provided.
引用
收藏
页码:4298 / 4303
页数:6
相关论文
共 50 条
  • [21] Sensitivity analysis of an optimal control problem in greenhouse climate management
    Van Henten, EJ
    BIOSYSTEMS ENGINEERING, 2003, 85 (03) : 355 - 364
  • [22] SENSITIVITY ANALYSIS OF AN OPTIMAL CONTROL PROBLEM UNDER LIPSCHITZIAN PERTURBATIONS
    El Ayoubi, A.
    Ait Mansour, M.
    Lahrache, J.
    Journal of Applied and Numerical Optimization, 2024, 6 (02): : 211 - 228
  • [23] Approximate Dynamic Programming Recurrence Relations for a Hybrid Optimal Control Problem
    Lu, W.
    Ferrari, S.
    Fierro, R.
    Wettergren, T. A.
    UNMANNED SYSTEMS TECHNOLOGY XIV, 2012, 8387
  • [24] Regularity along optimal trajectories of the value function of a Mayer problem
    Sinestrari, C
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (04): : 666 - 676
  • [25] Sensitivity analysis for solutions of a parametric optimal control problem of a descriptor system
    Kostyukova, OI
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2002, 41 (01) : 45 - 56
  • [26] A polynomial approach to the l(1)-mixed sensitivity optimal control problem
    Casavola, A
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (05) : 751 - 756
  • [27] Sensitivity Analysis and Optimal Control for a Friction Problem in the Linear Elastic Model
    Bourdin, Loic
    Caubet, Fabien
    de Cordemoy, Aymeric Jacob
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (01):
  • [28] Sensitivity analysis for solutions of a parametric optimal control problem of a descriptor system
    Kostyukova, O.I.
    Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2002, (01): : 50 - 61
  • [29] A numerical method for an optimal control problem with minimum sensitivity on coefficient variation
    Wei, W.
    Teo, K. L.
    Zhan, Z.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (04) : 1180 - 1190
  • [30] Mayer control problem with probabilistic uncertainty on initial positions
    Marigonda, Antonio
    Quincampoix, Marc
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (05) : 3212 - 3252