Some generalizations of Ahlfors Lemma

被引:0
|
作者
Ito, Manabu [1 ]
机构
[1] 10-20-101,Hirano Kita 1 Chome,Hirano Ku, Osaka 5470041, Japan
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2019年 / 30卷 / 05期
关键词
Conformal semimetric; Curvature; Ahlfors Lemma; SCHWARZ-LEMMA;
D O I
10.1016/j.indag.2019.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One of the most influential versions of the classical Schwarz Pick Lemma is probably that of Ahlfors. Pulling back a conformal semimetric on a Riemann surface under any holomorphic map from the open unit disk equipped with a Poincare metric, the curvature of which is assumed to bound from above the curvature of the Riemann surface, he successfully showed that a conformal semimetric to be compared with the Poincare metric is obtained. In the present paper, we give a comparison theorem between two conformal semimetrics of variable curvature in the same spirit. Our main theorem is a local one by its nature, but global results can be derived therefrom. (C) 2019 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:891 / 903
页数:13
相关论文
共 50 条
  • [31] GENERALIZATIONS OF HENSEL'S LEMMA AND THE NEAREST ROOT METHOD
    Ershov, Yu. L.
    ALGEBRA AND LOGIC, 2012, 50 (06) : 473 - 477
  • [32] Farkas' lemma: three decades of generalizations for mathematical optimization
    Dinh, N.
    Jeyakumar, V.
    TOP, 2014, 22 (01) : 1 - 22
  • [33] Generalizations of Stampacchia Lemma and applications to quasilinear elliptic systems
    Gao, Hongya
    Deng, Hua
    Huang, Miaomiao
    Ren, Wei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 208
  • [34] Generalizations of Hensel’s lemma and the nearest root method
    Yu. L. Ershov
    Algebra and Logic, 2012, 50 : 473 - 477
  • [35] Petersen’s lemma on matrix uncertainty and its generalizations
    M. V. Khlebnikov
    P. S. Shcherbakov
    Automation and Remote Control, 2008, 69 : 1932 - 1945
  • [36] Generalizations of Fitting's lemma in arbitrary associative rings
    Drazin, MP
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (08) : 3647 - 3675
  • [37] Petersen's Lemma on Matrix Uncertainty and Its Generalizations
    Khlebnikov, M. V.
    Shcherbakov, P. S.
    AUTOMATION AND REMOTE CONTROL, 2008, 69 (11) : 1932 - 1945
  • [38] ELIMINATING TAME RAMIFICATION GENERALIZATIONS OF ABHYANKAR'S LEMMA
    Dutta, Arpan
    Kuhlmann, Franz-Viktor
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 307 (01) : 121 - 136
  • [39] Generalizations and new proof of the discrete-time positive real lemma and bounded real lemma
    Xiao, CS
    Hill, DJ
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (06): : 740 - 743
  • [40] Comments on: Farkas’ lemma: three decades of generalizations for mathematical optimization
    Chong Li
    K. F. Ng
    TOP, 2014, 22 : 23 - 26