The Pragmatic Turn in Explainable Artificial Intelligence (XAI)

被引:113
|
作者
Paez, Andres [1 ]
机构
[1] Univ Andes, Dept Philosophy, Carrera 1 18A-12 G-533, Bogota 111711, DC, Colombia
关键词
Explainable artificial intelligence; Understanding; Explanation; Model transparency; Post-hoc interpretability; Machine learning; Black box models; EXPLANATION; KNOWLEDGE;
D O I
10.1007/s11023-019-09502-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper I argue that the search for explainable models and interpretable decisions in AI must be reformulated in terms of the broader project of offering a pragmatic and naturalistic account of understanding in AI. Intuitively, the purpose of providing an explanation of a model or a decision is to make it understandable to its stakeholders. But without a previous grasp of what it means to say that an agent understands a model or a decision, the explanatory strategies will lack a well-defined goal. Aside from providing a clearer objective for XAI, focusing on understanding also allows us to relax the factivity condition on explanation, which is impossible to fulfill in many machine learning models, and to focus instead on the pragmatic conditions that determine the best fit between a model and the methods and devices deployed to understand it. After an examination of the different types of understanding discussed in the philosophical and psychological literature, I conclude that interpretative or approximation models not only provide the best way to achieve the objectual understanding of a machine learning model, but are also a necessary condition to achieve post hoc interpretability. This conclusion is partly based on the shortcomings of the purely functionalist approach to post hoc interpretability that seems to be predominant in most recent literature.
引用
收藏
页码:441 / 459
页数:19
相关论文
共 50 条
  • [31] An Explorative Study on the Adoption of Explainable Artificial Intelligence (XAI) in Business Organizations
    Darvish, Mahdieh
    Kret, Kret Samy
    Bick, Markus
    DISRUPTIVE INNOVATION IN A DIGITALLY CONNECTED HEALTHY WORLD, I3E 2024, 2024, 14907 : 29 - 40
  • [32] Demystifying the black box: A survey on explainable artificial intelligence (XAI) in bioinformatics
    Budhkar, Aishwarya
    Song, Qianqian
    Su, Jing
    Zhang, Xuhong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2025, 27 : 346 - 359
  • [33] Explainable artificial intelligence (XAI): Precepts, models, and opportunities for research in construction
    Love, Peter E. D.
    Fang, Weili
    Matthews, Jane
    Porter, Stuart
    Luo, Hanbin
    Ding, Lieyun
    ADVANCED ENGINEERING INFORMATICS, 2023, 57
  • [34] Proceedings of the SICSA workshop on explainable artificial intelligence: SICSA XAI 21
    Martin, Kyle
    Wiratunga, Nirmalie
    Wijekoon, Anjana
    CEUR Workshop Proceedings, 2021, 2894
  • [35] Resource Reservation in Sliced Networks: An Explainable Artificial Intelligence (XAI) Approach
    Barnard, Pieter
    Macaluso, Irene
    Marchetti, Nicola
    DaSilva, Luiz A.
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1530 - 1535
  • [36] Explainable artificial intelligence (XAI) in radiology and nuclear medicine: a literature review
    de Vries, Bart M.
    Zwezerijnen, Gerben J. C.
    Burchell, George L.
    van Velden, Floris H. P.
    van Oordt, Catharina Willemien Menke-van der Houven
    Boellaard, Ronald
    FRONTIERS IN MEDICINE, 2023, 10
  • [37] Utilizing Explainable Artificial Intelligence (XAI) to Identify Determinants of Coffee Quality
    Sermmany, Khamsing
    Wanjantuk, Panupong
    Leelapatra, Watis
    2024 21ST INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING, JCSSE 2024, 2024, : 696 - 703
  • [38] Explainable Artificial Intelligence (XAI) for the Prediction of Diabetes Management: An Ensemble Approach
    Ganguly, Rita
    Singh, Dharmpal
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (07) : 158 - 163
  • [39] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence
    Ali, Sajid
    Abuhmed, Tamer
    El-Sappagh, Shaker
    Muhammad, Khan
    Alonso-Moral, Jose M.
    Confalonieri, Roberto
    Guidotti, Riccardo
    Del Ser, Javier
    Diaz-Rodriguez, Natalia
    Herrera, Francisco
    INFORMATION FUSION, 2023, 99
  • [40] Introduction to the special section on eXplainable Artificial Intelligence (XAI): Methods, Applications, and Challenges (VSI-xai)
    Singh, Ashutosh Kumar
    Kumar, Jitendra
    Saxena, Deepika
    V. Vasilakos, Athanasios
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 120