ON MULTI-VIEW LEARNING WITH ADDITIVE MODELS

被引:23
|
作者
Culp, Mark [1 ]
Michailidis, George [2 ]
Johnson, Kjell [3 ]
机构
[1] W Virginia Univ, Dept Stat, Morgantown, WV 26506 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[3] Pfizer Global Res & Dev, Ann Arbor, MI 48105 USA
来源
ANNALS OF APPLIED STATISTICS | 2009年 / 3卷 / 01期
关键词
Multi-view learning; generalized additive model; semi-supervised learning; smoothing; model selection; REGRESSION;
D O I
10.1214/08-AOAS202
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many scientific settings data can be naturally partitioned into variable groupings called views. Common examples include environmental (1st view) and genetic information (2nd view) in ecological applications, chemical (1st view) and biological (2nd view) data in drug discovery. Multi-view data also occur in text analysis and proteomics applications where one view consists of a graph with observations as the vertices and a weighted measure of pairwise similarity between observations as the edges. Further, in several of these applications the observations can be partitioned into two sets, one where the response is observed (labeled) and the other where the response is not (unlabeled). The problem for simultaneously addressing viewed data and incorporating unlabeled observations in training is referred to as multiview transductive learning. In this work we introduce and Study a comprehensive generalized fixed point additive modeling framework for multi-view transductive learning, where any view is represented by a linear smoother. The problem of view selection is discussed using a generalized Akaike Information Criterion, which provides an approach for testing the contribution of each view. An efficient implementation is provided for fitting these models with both backfitting and local-scoring type algorithms adjusted to semi-supervised graph-based learning. The proposed technique is assessed oil both synthetic and real data sets and is shown to be competitive to state-of-the-art co-training and graph-based techniques.
引用
收藏
页码:292 / 318
页数:27
相关论文
共 50 条
  • [41] Multi-View Learning With Incomplete Views
    Xu, Chang
    Tao, Dacheng
    Xu, Chao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 5812 - 5825
  • [42] Multi-view Proximity Learning for Clustering
    Lin, Kun-Yu
    Huang, Ling
    Wang, Chang-Dong
    Chao, Hong-Yang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2018), PT II, 2018, 10828 : 407 - 423
  • [43] Contrastive Multi-View Kernel Learning
    Liu, Jiyuan
    Liu, Xinwang
    Yang, Yuexiang
    Liao, Qing
    Xia, Yuanqing
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 9552 - 9566
  • [44] Multi-View Learning of Network Embedding
    Han, Zhongming
    Zheng, Chenye
    Liu, Dan
    Duan, Dagao
    Yang, Weijie
    NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE (JSAI-ISAI 2018), 2019, 11717 : 90 - 98
  • [45] Learning a Multi-View Stereo Machine
    Kar, Abhishek
    Hane, Christian
    Malik, Jitendra
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [46] Multi-View Learning for Material Classification
    Sumon, Borhan Uddin
    Muselet, Damien
    Xu, Sixiang
    Tremeau, Alain
    JOURNAL OF IMAGING, 2022, 8 (07)
  • [47] Deep Generative Multi-view Learning
    Karami, Mahdi
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 1167 : 465 - 477
  • [48] Robust Multi-View Representation Learning
    Venkatesan, Sibi
    Miller, James K.
    Dubrawski, Artur
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13939 - 13940
  • [49] Multi-view representation learning and understanding
    Zhou, Tao
    Zhang, Yu
    Thung, Kim-Han
    Adeli, Ehsan
    Rekik, Islem
    Zhao, Qibin
    Zhang, Changqing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (15) : 22865 - 22865
  • [50] Multi-View Guided Multi-View Stereo
    Poggi, Matteo
    Conti, Andrea
    Mattoccia, Stefano
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 8391 - 8398