An overview of skew distributions in model-based clustering

被引:15
|
作者
Lee, Sharon X. [1 ]
McLachlan, Geoffrey J. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Flexible distributions; Mixture models; Skew distributions; Transformation; FINITE MIXTURES; SCALE MIXTURES; R PACKAGE; INFERENCE; TRANSFORMATIONS;
D O I
10.1016/j.jmva.2021.104853
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The literature on non-normal model-based clustering has continued to grow in recent years. The non-normal models often take the form of a mixture of component densities that offer a high degree of flexibility in distributional shapes. They handle skewness in different ways, most typically by introducing latent 'skewing' variable(s), while some other consider marginal transformations of the original variable(s). We provide a selective overview of the main types of skew distributions used in the area, based on their characterization of skewness, and discuss different skew shapes they can produce. For brevity, we focus on the more commonly-used families of distributions. Crown Copyright (C) 2021 Published by Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering
    Derek S. Young
    Xi Chen
    Dilrukshi C. Hewage
    Ricardo Nilo-Poyanco
    Advances in Data Analysis and Classification, 2019, 13 : 1053 - 1082
  • [22] Comments on: model-based clustering and classification with non-normal mixture distributions
    L. A. García-Escudero
    A. Gordaliza
    A. Mayo-Iscar
    Statistical Methods & Applications, 2013, 22 : 459 - 461
  • [23] Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering
    Young, Derek S.
    Chen, Xi
    Hewage, Dilrukshi C.
    Nilo-Poyanco, Ricardo
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2019, 13 (04) : 1053 - 1082
  • [24] Comments on: model-based clustering and classification with non-normal mixture distributions
    Garcia-Escudero, L. A.
    Gordaliza, A.
    Mayo-Iscar, A.
    STATISTICAL METHODS AND APPLICATIONS, 2013, 22 (04): : 459 - 461
  • [25] Two new matrix-variate distributions with application in model-based clustering
    Tomarchio, Salvatore D.
    Punzo, Antonio
    Bagnato, Luca
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 152
  • [26] Model-based clustering with envelopes
    Wang, Wenjing
    Zhang, Xin
    Mai, Qing
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 82 - 109
  • [27] Challenges in model-based clustering
    Melnykov, Volodymyr
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (02): : 135 - 148
  • [28] Model-based linear clustering
    Yan, Guohua
    Welch, William J.
    Zamar, Ruben H.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (04): : 716 - 737
  • [29] Model-Based Edge Clustering
    Sewell, Daniel K.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (02) : 390 - 405
  • [30] Model-Based Clustering with HDBSCAN
    Strobl, Michael
    Sander, Joerg
    Campello, Ricardo J. G. B.
    Zaiane, Osmar
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT II, 2021, 12458 : 364 - 379