The r largest order statistics model for extreme wind speed estimation

被引:28
|
作者
An, Ying [1 ]
Pandey, M. D. [1 ]
机构
[1] Univ Waterloo, Dept Civil Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
wind speed; extrenic value estimation; generalized extreme value distributions; order statistics; annual maxima; maximum likelihood method; method of independent storm;
D O I
10.1016/j.jweia.2006.05.008
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The paper presents the statistical estimation of extreme wind speed using annually r largest order statistics (r-LOS) extracted from the time series of wind data. The method is based on a joint generalized extreme value distribution of r-LOS derived from the theory of Poisson process. The parameter estimation is based on the method of maximum likelihood. The hourly wind speed data collected at 30 stations in Ontario, Canada, are analyzed in the paper. The results of r-LOS method are compared with those obtained from the method of independent storms (MIS) and specifications of the Canadian National Building Code (CNBC-1995). The CNBC estimates are apparently conservative upper bound due to large sampling error associated with annual maxima analysis. Using the r-LOS method, the paper shows that the wind pressure data can be Suitably modelled by the Gumbel distribution. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:165 / 182
页数:18
相关论文
共 50 条
  • [31] GENERALIZED EXTREME WIND STATISTICS
    THOM, HCS
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1967, 48 (03) : 205 - &
  • [32] Maximum power estimation using the limiting distributions of extreme order statistics
    Qiu, QR
    Wu, Q
    Pedram, M
    1998 DESIGN AUTOMATION CONFERENCE, PROCEEDINGS, 1998, : 684 - 689
  • [33] Estimation of the location of the maximum of a regression function using extreme order statistics
    Chen, H
    Huang, MNL
    Huang, WJ
    JOURNAL OF MULTIVARIATE ANALYSIS, 1996, 57 (02) : 191 - 214
  • [34] Bayes Estimation of Inverse Weibull Distribution for Extreme Wind Speed Prediction
    Chiodo, E.
    Mazzanti, G.
    Karimian, M.
    2015 INTERNATIONAL CONFERENCE ON CLEAN ELECTRICAL POWER (ICCEP), 2015, : 639 - 646
  • [35] Comparison of Two Different Estimation Methods of Wind Speed Extreme Values
    Chiodo, E.
    Mazzanti, G.
    Karimian, M.
    Zoh, R.
    2015 INTERNATIONAL CONFERENCE ON CLEAN ELECTRICAL POWER (ICCEP), 2015, : 653 - 659
  • [36] Gaussian mixture model for extreme wind turbulence estimation
    Zhang, Xiaodong
    Natarajan, Anand
    WIND ENERGY SCIENCE, 2022, 7 (05) : 2135 - 2148
  • [37] On the dependence between the extreme order statistics in the proportional hazards model
    Dolati, Ali
    Genest, Christian
    Kochar, Subhash C.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (05) : 777 - 786
  • [38] LAN of extreme order statistics
    Falk, M
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1995, 47 (04) : 693 - 717
  • [39] ON EXTREME ORDER-STATISTICS
    LAMPERTI, J
    ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (04): : 1726 - &
  • [40] The effect of the generalized extreme value distribution parameter estimation methods in extreme wind speed prediction
    Soukissian, Takvor H.
    Tsalis, Christos
    NATURAL HAZARDS, 2015, 78 (03) : 1777 - 1809