We say a ring with unity is right principally quasi-Baer (or simply, right p.q. -Baer) if the right annihilator of a principal right ideal is generated las a right ideal) by an idempotent. This class of rings includes the biregular rings and is closed under direct products and Morita invariance. The 2-by-2 formal upper triangular matrix rings of this class are characterized. Connections to related classes of rings (e.g., right PP, Baer, quasi-Baer, right FPF, right GFC, etc.) are investigated. Examples to illustrate and delimit the theory are provided.
机构:
Kyung Hee Univ, Dept Math, Seoul, South Korea
Kyung Hee Univ, Res Inst Basic Sci, Seoul, South KoreaHanbat Natl Univ, Coll Liberal Arts, Taejon 305719, South Korea
Hong, Chan Yong
论文数: 引用数:
h-index:
机构:
Kim, Nam Kyun
Lee, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Pusan Natl Univ, Dept Math Educ, Pusan 609735, South KoreaHanbat Natl Univ, Coll Liberal Arts, Taejon 305719, South Korea
机构:
San Diego State Univ Imperial Valley Campus, Dept Math, Calexico, CA 92231 USASan Diego State Univ Imperial Valley Campus, Dept Math, Calexico, CA 92231 USA