Taut foliations of torus knot complements

被引:0
|
作者
Nakae, Yasuharu [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for any torus knot K(r, s), vertical bar r vertical bar > s > 0, there is a family of taut foliations of the complement of K(r, s), which realizes all boundary slopes in (-infinity, 1) when r > 0, or (-1, infinity) when r < 0. This theorem is proved by a construction of branched surfaces and laminations which are used in the Roberts paper [5]. Applying this construction to a fibered knot K', we also show that there exists a family of taut foliations of the complement of the cable knot K of K' which realizes all boundary slopes in (-infinity, 1) or (-1, infinity). Further, we partially extend the theorem of Roberts to a link case.
引用
收藏
页码:31 / 67
页数:37
相关论文
共 50 条
  • [21] KNOT COMPLEMENTS AND GROUPS
    WHITTEN, W
    TOPOLOGY, 1987, 26 (01) : 41 - 44
  • [22] ARITHMETICITY OF KNOT COMPLEMENTS
    REID, AW
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1991, 43 : 171 - 184
  • [23] DETERMINING KNOTS BY THEIR COMPLEMENTS AND KNOT COMPLEMENTS BY THEIR GROUPS
    SIMON, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (06): : A654 - A654
  • [24] A note on geodesic foliations on the torus
    Mounoud, Pierre
    GEOMETRIAE DEDICATA, 2007, 126 (01) : 275 - 282
  • [25] On singular foliations on the solid torus
    Arraut, Jose L.
    Martins, Luciana F.
    Schuetz, Dirk
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (13) : 1659 - 1674
  • [26] A note on geodesic foliations on the torus
    Pierre Mounoud
    Geometriae Dedicata, 2007, 126 : 275 - 282
  • [27] L-spaces, taut foliations, and graph manifolds
    Hanselman, Jonathan
    Rasmussen, Jacob
    Rasmussen, Sarah Dean
    Watson, Liam
    COMPOSITIO MATHEMATICA, 2020, 156 (03) : 604 - 612
  • [28] Fermions on a torus knot
    A. A. Araújo Filho
    J. A. A. S. Reis
    Subir Ghosh
    The European Physical Journal Plus, 137
  • [29] Fermions on a torus knot
    Araujo Filho, A. A.
    Reis, J. A. A. S.
    Ghosh, Subir
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (05):
  • [30] TAUT FOLIATIONS IN SURFACE BUNDLES WITH MULTIPLE BOUNDARY COMPONENTS
    Kalelkar, Tejas
    Roberts, Rachel
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 273 (02) : 257 - 275