Inverse uncertainty quantification of trace physical model parameters using BFBT benchmark data

被引:18
|
作者
Hu, Guojun [1 ]
Kozlowski, Tomasz [1 ]
机构
[1] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Room 224 Talbot Lab,104 S Wright St, Urbana, IL 61801 USA
关键词
Inverse uncertainty quantification; BFBT; TRACE; MLE; MAP; MCMC;
D O I
10.1016/j.anucene.2016.05.021
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Forward quantification of simulation (code) response uncertainties requires knowledge of physical model parameter uncertainties. Nuclear thermal-hydraulics codes, such as RELAP5 and TRACE, do not provide any information on uncertainties of physical model parameters. A framework is developed to quantify uncertainties of physical model parameters using Maximum Likelihood Estimation (MLE), Bayesian Maximum A Priori (MAP), and Markov Chain Monte Carlo (MCMC) algorithms. The objective of the present work is to perform the sensitivity analysis of the physical model parameters in code TRACE and calculate their uncertainties using MLE, MAP, and MCMC algorithms. The OECD/NEA BWR Full-size fine-mesh Bundle Test (BFBT) data is used to quantify uncertainty of selected physical models of TRACE code. The BFBT is based on a multi-rod assembly with measured data available for single or two-phase pressure drop, axial and radial void fraction distributions, and critical power for a wide range of system conditions. In this work, the steady-state cross-sectional averaged void fraction distribution is used as the input data for inverse uncertainty quantification (IUQ) algorithms, and the selected physical model's probability distribution function (PDF) is the desired output quantity. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 50 条
  • [21] Inverse estimation of parameters in a nitrogen model using field data
    Schmied, B
    Abbaspour, K
    Schulin, R
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2000, 64 (02) : 533 - 542
  • [22] Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian Process, Part 2: Application to TRACE
    Wu, Xu
    Kozlowski, Tomasz
    Meidani, Hadi
    Shirvan, Koroush
    NUCLEAR ENGINEERING AND DESIGN, 2018, 335 : 417 - 431
  • [23] Inverse uncertainty quantification of input model parameters for thermal-hydraulics simulations using expectation-maximization under Bayesian framework
    Shrestha, Rijan
    Kozlowski, Tomasz
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (06) : 1011 - 1026
  • [24] Quantification of the uncertainty of the physical models in the system thermal-hydraulic codes - PREMIUM benchmark
    Skorek, Tomasz
    de Crecy, Agnes
    Kovtonyuk, Andriy
    Petruzzi, Alessandro
    Mendizabal, Rafael
    de Alfonso, Elsa
    Reventos, Francesc
    Freixa, Jordi
    Sarrette, Christine
    Kyncl, Milos
    Pernica, Rostislav
    Baccou, Jean
    Fouet, Fabrice
    Probst, Pierre
    Chung, Bub-Dong
    Tran Tranh Tram
    Oh, Deog-Yeon
    Gusev, Alexey
    Falkov, Alexander
    Shvestov, Yuri
    Li, Dong
    Liu, Xiaojing
    Zhang, Jinzhao
    Alku, Torsti
    Kurki, Joona
    Jaeger, Wadim
    Sanchez, Victor
    Wicaksono, Damar
    Zerkak, Omar
    Pautz, Andreas
    NUCLEAR ENGINEERING AND DESIGN, 2019, 354
  • [25] The use of machine learning for inverse uncertainty quantification in TRACE code based on Marviken experiment
    Domitr, Pawel
    Wlostowski, Mateusz
    NUCLEAR ENGINEERING AND DESIGN, 2021, 384
  • [26] Inverse flow prediction using ensemble PINNs and uncertainty quantification
    Soibam, Jerol
    Aslanidou, Ioanna
    Kyprianidis, Konstantinos
    Fdhila, Rebei Bel
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 226
  • [27] Uncertainty quantification of inverse analysis for geomaterials using probabilistic programming
    Zhao, Hongbo
    Li, Shaojun
    Zang, Xiaoyu
    Liu, Xinyi
    Zhang, Lin
    Ren, Jiaolong
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2024, 16 (03) : 895 - 908
  • [28] Subspace-based Inverse Uncertainty Quantification for Nuclear Data Assessment
    Khuwaileh, B. A.
    Abdel-Khalik, H. S.
    NUCLEAR DATA SHEETS, 2015, 123 : 57 - 61
  • [29] A multivariate interval approach for inverse uncertainty quantification with limited experimental data
    Faes, Matthias
    Broggi, Matteo
    Patelli, Edoardo
    Govers, Yves
    Mottershead, John
    Beer, Michael
    Moens, David
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 118 : 534 - 548
  • [30] Inverse estimation of material model parameters using Bayesian data assimilation
    Akinori, Yamanaka
    Michihiko, Suda
    Sae, Sueki
    Kengo, Sasaki
    Ryuki, Funamoto
    MATERIAL FORMING, ESAFORM 2024, 2024, 41 : 1190 - 1195