Concentration and delta C-13 of leaf carbohydrates in relation to gas exchange in Quercus robur under elevated CO2 and drought

被引:53
|
作者
Picon, C
Ferhi, A
Guehl, JM
机构
[1] INRA NANCY, UNITE RECH ECOPHYSIOL FORESTIERE, EQUIPE BIOCLIMATOL ECOPHYSIOL, F-54280 CHAMPENOUX, FRANCE
[2] UNIV PARIS 06, CTR RECH GEODYNAM, F-74203 THONON LES BAINS, FRANCE
关键词
soil drying cycle; elevated CO2; leaf gas-exchange; leaf carbohydrate concentrations; carbon isotope discrimination; growth; Quercus robur;
D O I
10.1093/jexbot/48.313.1547
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The variations of leaf carbohydrate concentration, carbon isotope discrimination (Delta) of leaf soluble carbohydrate, gas-exchange and growth during a soil drying cycle under 350 and 700 mu mol mol(-1) CO2 concentrations ([CO2]) in Quercus robur seedlings were analysed. In well-watered conditions, a doubling of [CO2] caused an increase of CO2 assimilation rate (A) (+47%) and a decrease of stomatal conductance for water vapour (g) (-25%), and doubled the intrinsic water-use efficiency (A/g). The values of Delta were not affected by elevated [CO2] which was consistent with the 2-fold increase of A/g. Elevated [CO2] also significantly increased sucrose and starch leaf concentrations as well as aerial growth and plant dry weight. The stimulating effect of CO2 enrichment on A and A/g was maintained in moderate drought conditions, but disappeared in the most severe drought conditions, Drought induced an increase of hexose concentrations in both [CO2], but this effect was more pronounced under elevated [CO2], which may contribute to increase osmoregulation, From the onset of drought, starch was depleted in both [CO2]. Carbon isotope discrimination decreased in response to drought, which corresponded to an increase in A/g according to the two-step model of isotopic discrimination, In contrast, the A/g values derived from instantaneous leaf gas-exchange measurements decreased along the drying cycle, The discrepancy observed between the two independent estimates of water-use efficiency is discussed in terms of time-scale integration. The results obtained with the isotopic approach using soluble carbohydrate suggest a predominant stomatal limitation of CO2 assimilation in response to drought.
引用
收藏
页码:1547 / 1556
页数:10
相关论文
共 50 条
  • [41] Effects of elevated atmospheric CO2 on leaf gas exchange response to progressive drought in barley and tomato plants with different endogenous ABA levels
    Wei, Zhenhua
    Fang, Liang
    Li, Xiangnan
    Liu, Jie
    Liu, Fulai
    PLANT AND SOIL, 2020, 447 (1-2) : 431 - 446
  • [42] Effects of elevated atmospheric CO2 on leaf gas exchange response to progressive drought in barley and tomato plants with different endogenous ABA levels
    Zhenhua Wei
    Liang Fang
    Xiangnan Li
    Jie Liu
    Fulai Liu
    Plant and Soil, 2020, 447 : 431 - 446
  • [43] LEAF GAS-EXCHANGE IN CAUCASIAN BLUESTEM IN RELATION TO LIGHT, TEMPERATURE, HUMIDITY, AND CO2
    COYNE, PI
    BRADFORD, JA
    AGRONOMY JOURNAL, 1984, 76 (01) : 107 - 113
  • [44] Leaf ecophysiological and metabolic response in Quercus pyrenaica Willd seedlings to moderate drought under enriched CO2 atmosphere
    Aranda, Ismael
    Cadahia, Estrella
    Fernandez de Simon, Brigida
    JOURNAL OF PLANT PHYSIOLOGY, 2020, 244
  • [45] Changes in concentration and delta C-13 values of soil-trapped CH4 and CO2 in flooded rice soil
    Chidthaisong, A
    Watanabe, I
    BIOLOGY AND FERTILITY OF SOILS, 1997, 24 (01) : 70 - 75
  • [46] EMPIRICAL MODEL OF CO2 EXCHANGE OF A C3 PLANT IN RELATION TO LIGHT CO2 CONCENTRATION AND TEMPERATURE
    ENOCH, HZ
    SACKS, JM
    PHOTOSYNTHETICA, 1978, 12 (02) : 150 - 157
  • [47] Growth and Leaf Gas Exchange in Three Birch Species Exposed to Elevated Ozone and CO2 in Summer
    Hoshika, Yasutomo
    Watanabe, Makoto
    Inada, Naoki
    Koike, Takayoshi
    WATER AIR AND SOIL POLLUTION, 2012, 223 (08): : 5017 - 5025
  • [48] Multigenerational Effects of Elevated CO2 and N Supply on Leaf Gas Exchange Traits in Wheat Plants
    Wang, Xizi
    Rosenqvist, Eva
    Zong, Yuzheng
    Li, Xiangnan
    Liu, Fulai
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2024, 210 (04)
  • [49] Growth and Leaf Gas Exchange in Three Birch Species Exposed to Elevated Ozone and CO2 in Summer
    Yasutomo Hoshika
    Makoto Watanabe
    Naoki Inada
    Takayoshi Koike
    Water, Air, & Soil Pollution, 2012, 223 : 5017 - 5025
  • [50] THE INFLUENCE OF ELEVATED CO2 ON GROWTH AND AGE-RELATED-CHANGES IN LEAF GAS-EXCHANGE
    PEARSON, M
    BROOKS, GL
    JOURNAL OF EXPERIMENTAL BOTANY, 1995, 46 (292) : 1651 - 1659