State-space models: From the EM algorithm to a gradient approach

被引:12
|
作者
Olsson, Rasmus Kongsgaard [1 ]
Petersen, Kaare Brandt [1 ]
Lehn-Schioler, Tue [1 ]
机构
[1] Tech Univ Denmark, DK-2800 Lyngby, Denmark
关键词
D O I
10.1162/neco.2007.19.4.1097
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Slow convergence is observed in the EM algorithm for linear state-space models. We propose to circumvent the problem by applying any off-the-shelf quasi-Newton-type optimizer, which operates on the gradient of the log-likelihood function. Such an algorithm is a practical alternative due to the fact that the exact gradient of the log-likelihood function can be computed by recycling components of the expectation-maximization (EM) algorithm. We demonstrate the efficiency of the proposed method in three relevant instances of the linear state-space model. In high signal-to-noise ratios, where EM is particularly prone to converge slowly, we show that gradient-based learning results in a sizable reduction of computation time.
引用
收藏
页码:1097 / 1111
页数:15
相关论文
共 50 条
  • [21] A simple Bayesian state-space approach to the collective risk models
    Ahn, Jae Youn
    Jeong, Himchan
    Lu, Yang
    SCANDINAVIAN ACTUARIAL JOURNAL, 2023, 2023 (05) : 509 - 529
  • [22] A state-space approach to analyze structural uncertainty in physical models
    Moosavi, Azam
    Sandu, Adrian
    METROLOGIA, 2018, 55 (01) : S1 - S12
  • [23] Endogenous cycles in heterogeneous agent models: a state-space approach
    Gusella, Filippo
    Ricchiuti, Giorgio
    JOURNAL OF EVOLUTIONARY ECONOMICS, 2024, : 739 - 782
  • [24] ADAPTIVE RECURSIVE STATE-SPACE FILTERS USING A GRADIENT-BASED ALGORITHM
    JOHNS, DA
    SNELGROVE, WM
    SEDRA, AS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1990, 37 (06): : 673 - 684
  • [25] Coupling stochastic EM and approximate Bayesian computation for parameter inference in state-space models
    Umberto Picchini
    Adeline Samson
    Computational Statistics, 2018, 33 : 179 - 212
  • [26] Coupling stochastic EM and approximate Bayesian computation for parameter inference in state-space models
    Picchini, Umberto
    Samson, Adeline
    COMPUTATIONAL STATISTICS, 2018, 33 (01) : 179 - 212
  • [27] State-Space Models of Mental Processes from fMRI
    Janoos, Firdaus
    Singh, Shantanu
    Machiraju, Raghu
    Wells, William M.
    Morocz, Istvan A.
    INFORMATION PROCESSING IN MEDICAL IMAGING, 2011, 6801 : 588 - 599
  • [28] System Identification of Bilinear State-space Models by Modified Gradient Search Method
    Zhong Lusheng
    Fan Xiaoping
    Yang Hui
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 1282 - 1286
  • [29] STATE-SPACE APPROACH TO MAGNETOTHERMOELASTICITY
    DAS, NC
    BHATTACHARYA, SK
    DAS, SN
    JOURNAL OF THERMAL STRESSES, 1981, 4 (02) : 259 - 276
  • [30] From turbo hidden Markov models to turbo state-space models
    Perronnin, F
    Dugelay, JL
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING SPECIAL SESSIONS, 2004, : 29 - 32