This paper provides an overview of the current state-of-the-art in the formation of shallow junctions in germanium by ion implantation, covering the issues of dopant activation, diffusion and defect removal. As will be shown, for the case of p(+) implantations, the application of rapid thermal annealing (RTA) to B implants yields good sheet resistance values, corresponding with activation levels well above the maximum solid solubility. A further improvement can be achieved by the use of a Ge pre-amorphization implant (PAI), which also removes the stable extended defects observed after high-dose B implantations. It will be shown that the formation of shallow n(+) junctions is a more challenging field due to the rather low dopant solubilities and high diffusivities. However, encouraging results will be reported on the application of laser and flash-lamp annealing of P implantations in Ge. Also point-defect engineering is shown to be successful in controlling the junction formation. (C) 2006 Elsevier Ltd. All rights reserved.