共 50 条
Pure-periodic modules and a structure of pure-projective resolutions
被引:21
|作者:
Simson, D
[1
]
机构:
[1] Nicholas Copernicus Univ, Fac Med & Informat, PL-87100 Torun, Poland
关键词:
D O I:
10.2140/pjm.2002.207.235
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We investigate the structure of pure-syzygy modules in a pure-projective resolution of any right R-module over an associative ring R with an identity element. We show that a right R-module M is pure-projective if and only if there exists an integer n greater than or equal to 0 and a pure-exact sequence 0 --> M --> P-n --> ... P-0 --> M --> 0 with pure-projective modules P-n,..., P-0. As a consequence we get the following version of a result in Benson and Goodearl, 2000: at module M is projective if M admits an exact sequence 0 --> M --> F-n --> ... F-0 --> M --> 0 with projective modules F-n,..., F-0.
引用
收藏
页码:235 / 256
页数:22
相关论文