Aqueous Lithium Carboxymethyl Cellulose and Polyacrylic Acid/Acrylate Copolymer Composite Binder for the LiNi0.5Mn0.3Co0.2O2 Cathode of Lithium-Ion Batteries

被引:12
|
作者
Cui, Yan [1 ,2 ]
Chen, Jiahui [1 ,2 ]
Zhao, Jingyang [2 ]
Ma, Zhen [1 ,3 ]
Tan, Yuming [2 ]
Xue, Jianjun [2 ]
Xu, Hanliang [2 ]
Nan, Junmin [1 ]
机构
[1] South China Normal Univ, Sch Chem, Guangzhou 510006, Peoples R China
[2] Guangzhou Great Power Energy & Technol Co Ltd, Guangzhou 511483, Peoples R China
[3] Nanwu Technol Guangzhou Co Ltd, Guangzhou 510520, Peoples R China
基金
中国博士后科学基金;
关键词
LiNi0; 5Mn(0); 3Co(0); 2O(2) cathode; lithium-ion batteries; aqueous green binder; aluminum corrosion; electrochemical and high temperature performance; NEGATIVE ELECTRODES; PERFORMANCE; CAPACITY; SOLVENT; ENHANCE; ACID;
D O I
10.1149/1945-7111/ac47ed
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Water-soluble green cathode binders are developed to increase the performance of 18650 type LiNi0.5Mn0.3Co0.2O2 (NMC532) lithium-ion batteries (LIBs). Using four basal substances to prepare the composite binders, it is indicated that the cathode with lithium carboxymethyl cellulose (CMCLi)-polyacrylic acid/acrylate copolymer (type 306 F) composite binder (Marked as Binder C) avoids the corrosion of aluminum substrate, and exhibits stronger adhesive force and better electrolyte adsorption capacity compared to other cathodes with PVDF binder and single aqueous binders. In particular, the electrochemical performance of the batteries with Binder C is also improved, initial specific capacity of 161.5 mAh g(-1) at 0.2C and retention capacity of 88.9% at 1C after 1200 cycles are obtained. The batteries with Binder C also exhibit enhanced high-temperature storage performance, there is 97.9% residual capacity when the fully charged batteries are stored in 60 degrees C for 14 d. The enhanced performance is mainly attributed to the chemical stability and bonding ability of polyacrylic acid/acrylate copolymer and better conduction at the liquid-solid interface caused by CMCLi. These results indicate that Binder C has promising application prospects in the NMC532 cathode, and also provide a reference for the green production of NMC-based LIBs.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Performance and ageing behavior of water-processed LiNi0.5Mn0.3Co0.2O2/Graphite lithium-ion cells
    Bichon, Marie
    Sotta, Dane
    De Vito, Eric
    Porcher, Willy
    Lestriez, Bernard
    JOURNAL OF POWER SOURCES, 2021, 483
  • [22] Flux growth and enhanced electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode material by excess lithium carbonate for lithium-ion batteries
    Qu, Yanyu
    Mo, Yan
    Jia, Xiaobo
    Zhang, Liao
    Du, Baodong
    Lu, Yang
    Li, De
    Chen, Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 788 : 810 - 818
  • [23] Electrochemical evaluation of LiNi0.5Mn0.3Co0.2O2, LiNi0.6Mn0.2Co0.2O2, and LiNi0.8Mn0.1Co0.1O2 cathode materials for lithium-ion batteries: from half-coin cell to pouch cell
    Mohammad Mohsen Loghavi
    Ashkan Nahvibayani
    Mohammad Hadi Moghim
    Mohsen Babaiee
    Shaghayegh Baktashian
    Rahim Eqra
    Monatshefte für Chemie - Chemical Monthly, 2022, 153 : 1197 - 1212
  • [24] Electrochemical evaluation of LiNi0.5Mn0.3Co0.2O2, LiNi0.6Mn0.2Co0.2O2, and LiNi0.8Mn0.1Co0.1O2 cathode materials for lithium-ion batteries: from half-coin cell to pouch cell
    Loghavi, Mohammad Mohsen
    Nahvibayani, Ashkan
    Moghim, Mohammad Hadi
    Babaiee, Mohsen
    Baktashian, Shaghayegh
    Eqra, Rahim
    MONATSHEFTE FUR CHEMIE, 2022, 153 (12): : 1197 - 1212
  • [25] Crystal alignment of a LiNi0.5Mn0.3Co0.2O2 electrode material for lithium ion batteries using its magnetic properties
    Kim, Cham
    Yang, Yeokyung
    Lopez, David Humberto
    Ha, Dongwoo
    APPLIED PHYSICS LETTERS, 2020, 117 (12)
  • [26] Comparison of monocrystalline and secondary LiNi0.5Co0.2Mn0.3O2 cathode material for high-performance lithium-ion batteries
    Cheng, Lei
    Zhang, Bao
    Su, Shi-Lin
    Ming, Lei
    Zhao, Yi
    Wang, Chun-Hui
    Ou, Xing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 845 (845)
  • [27] Surface engineering with bifunctional layer in LiNi 0.5 Co 0.2 Mn 0.3 O 2 for high-performance cathode materials of lithium-ion batteries
    Zhao, Yinghao
    Kantichaimongkol, Pongsakorn
    Yang, Chengwu
    Dai, Zhiqiang
    Xu, Dong
    Zhang, Xueqing
    Okhawilai, Manunya
    Pattananuwat, Prasit
    Zhang, Xinyu
    Qin, Jiaqian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [28] Direct Regeneration of LiNi0.5Co0.2Mn0.3O2 Cathode from Spent Lithium-Ion Batteries by the Molten Salts Method
    Jiang, Guanghui
    Zhang, Yannan
    Meng, Qi
    Zhang, Yingjie
    Dong, Peng
    Zhang, Mingyu
    Yang, Xi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (49) : 18138 - 18147
  • [29] Research on the facile regeneration of degraded cathode materials from spent LiNi0.5Co0.2Mn0.3O2 lithium-ion batteries
    Yang, Chen
    Hao, Yujia
    Wang, Jiayi
    Zhang, Mingdao
    Song, Li
    Qu, Jiaan
    FRONTIERS IN CHEMISTRY, 2024, 12