On the locating domination number of corona product

被引:1
|
作者
Santi, Risan Nur [1 ,2 ]
Agustin, Ika Hesti [1 ,2 ]
Dafik [1 ,3 ]
Alfarisi, Ridho [1 ,4 ]
机构
[1] Univ Jember, CGANT, Jember, Indonesia
[2] Univ Jember, Dept Math, Jember, Indonesia
[3] Univ Jember, Dept Math Educ, Jember, Indonesia
[4] Univ Jember, Dept Elementary Sch Teacher Educ, Jember, Indonesia
关键词
Locating dominating sets; dominating sets; locating dominating number; corona product;
D O I
10.1088/1742-6596/1008/1/012053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V (G), E(G) be a connected graph and v is an element of V(G). A dominating set for a graph G = (V, E) is a subset D of V such that every vertex not in D is adjacent to at least one member of D. The domination number gamma(G) is the number of vertices in a smallest dominating set for G. Vertex set S in graph G = (V, E) is a locating dominating set if for each pair of distinct vertices u and v in V(G) - S we have N(u) boolean AND S not equal phi, N(v) boolean AND S not equal phi, and N(u) boolean AND S not equal N(v) boolean AND S, that is each vertex outside of S is adjacent to a distinct, nonempty subset of the elements of S. In this paper, we characterize the locating dominating sets in the corona product of graphs namely path, cycle, star, wheel, and fan graph.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On the domination number of the product of two cycles
    El-Zahar, Mohamed H.
    Shaheen, Ramy S.
    ARS COMBINATORIA, 2007, 84 : 51 - 64
  • [22] Geodetic global domination in corona and strong product of graphs
    Xaviour, X. Lenin
    Chellathurai, S. Robinson
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (04)
  • [23] Related Wheel Graphs and Its Locating Edge Domination Number
    Adawiyah, R.
    Agustin, I. H.
    Dafik
    Slamin
    Albirri, E. R.
    1ST INTERNATIONAL CONFERENCE ON SCIENCE, MATHEMATICS, ENVIRONMENT AND EDUCATION, 2018, 1022
  • [24] GLOBAL LOCATION-DOMINATION IN THE LEXICOGRAPHIC PRODUCT AND CORONA OF GRAPHS
    Malnegro, Analen A.
    Malacas, Gina A.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 20 (01): : 61 - 71
  • [25] On the power domination number of the Cartesian product of graphs
    Koh, K. M.
    Soh, K. W.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (03) : 253 - 257
  • [26] Italian Domination Number of Direct Product of Paths
    Gao H.
    Huang J.
    Li K.
    Yang Y.
    Tongji Daxue Xuebao/Journal of Tongji University, 2022, 50 (10): : 1517 - 1522
  • [27] Connected power domination number of product graphs
    Ganesamurthy, S.
    Srimathi, R.
    Jeyaranjani, J.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [28] The Twin Domination Number of Strong Product of Digraphs
    MA HONG-XIA
    LIU JUAN
    Du Xian-kun
    CommunicationsinMathematicalResearch, 2016, 32 (04) : 332 - 338
  • [29] On domination number of Cartesian product of directed paths
    Liu, Juan
    Zhang, Xindong
    Meng, Jixiang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (04) : 651 - 662
  • [30] ON GRUNDY TOTAL DOMINATION NUMBER IN PRODUCT GRAPHS
    Bresar, Bostjan
    Bujtas, Csilla
    Gologranc, Tanja
    Klavzar, Sandi
    Kosmrlj, Gasper
    Marc, Tilen
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 225 - 247