Efficient Expanded Mixed Finite Element Method for the Forchheimer Model

被引:0
|
作者
Li, Yanping [1 ]
Zhao, Qingli [1 ]
机构
[1] Shandong Jianzhu Univ, Jinan, Shandong, Peoples R China
关键词
THEORETICAL DERIVATION; FLOW;
D O I
10.1007/978-3-319-75928-9_74
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, expanded mixed finite element method is used to approximate the Forchheimer model. This method extends the traditional mixed element technique. Existence and uniqueness are proved. Optimal L-2-error analysis is obtained. Numerical simulations are given to validate the theoretical derivation.
引用
收藏
页码:818 / 827
页数:10
相关论文
共 50 条
  • [21] Mixed Element Method for Two-Dimensional Darcy-Forchheimer Model
    Pan, Hao
    Rui, Hongxing
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (03) : 563 - 587
  • [22] A Multipoint Flux Mixed Finite Element Method for Darcy–Forchheimer Incompressible Miscible Displacement Problem
    Wenwen Xu
    Dong Liang
    Hongxing Rui
    Xindong Li
    Journal of Scientific Computing, 2020, 82
  • [23] A Mixed Finite Element and Characteristic Mixed Finite Element for Incompressible Miscible Darcy-Forchheimer Displacement and Numerical Analysis
    Yuan, Yirang
    Li, Changfeng
    Sun, Tongjun
    Yang, Qing
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (05) : 2026 - 2042
  • [24] A MIXED FINITE ELEMENT AND CHARACTERISTIC MIXED FINITE ELEMENT FOR INCOMPRESSIBLE MISCIBLE DARCY-FORCHHEIMER DISPLACEMENT AND NUMERICAL ANALYSIS
    袁益让
    李长峰
    孙同军
    杨青
    Acta Mathematica Scientia, 2023, 43 (05) : 2026 - 2042
  • [25] A Mixed Finite Element and Characteristic Mixed Finite Element for Incompressible Miscible Darcy-Forchheimer Displacement and Numerical Analysis
    Yirang Yuan
    Changfeng Li
    Tongjun Sun
    Qing Yang
    Acta Mathematica Scientia, 2023, 43 : 2026 - 2042
  • [26] Convergence analysis of hybrid expanded mixed finite element method for elliptic equations
    Song, Huailing
    Jiang, Lijian
    Chen, Gaojie
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (10) : 1205 - 1219
  • [27] A new expanded mixed finite element method for Kirchhoff type parabolic equation
    Bingjie Ji
    Jiansong Zhang
    Yue Yu
    Yun Yu
    Numerical Algorithms, 2023, 92 : 2405 - 2432
  • [28] Expanded Mixed Finite Element Method for the Two-Dimensional Sobolev Equation
    Zhao, Qing-Li
    Li, Zong-Cheng
    Ding, You-Zheng
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [29] A new expanded mixed finite element method for Kirchhoff type parabolic equation
    Ji, Bingjie
    Zhang, Jiansong
    Yu, Yue
    Yu, Yun
    NUMERICAL ALGORITHMS, 2023, 92 (04) : 2405 - 2432
  • [30] An expanded mixed finite element method for two-dimensional Sobolev equations
    Li, Na
    Lin, Ping
    Gao, Fuzheng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 : 342 - 355