Groebner bases and the cohomology of Grassmann manifolds with application to immersion

被引:0
|
作者
Monks, KG [1 ]
机构
[1] Univ Scranton, Dept Math, Scranton, PA 18510 USA
来源
关键词
Grassmann manifolds; Groebner bases; immersions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(k,n) be the Grassmann manifold of k-planes in Rn+k. Borel showed that H* (G(k,n);Z(2)) = Z(2) [w(1), . . . , w(k)] / I-k,I-n where I-k,I-n is the ideal generated by the dual Stiefel-Whitney classes (w) over bar (n+1), . . . , ($) over bar (n+k). We compute Groebner bases for the ideals I-2,I-2i-3 and I-2,I-2i-4 and use these results along with the theory of modified Postnikov towers to prove immersion results, namely that G immerses in R2 i+2 -15. AS a benefit of the Groebner basis theory G(2, 2)i (- 3) we also obtain a simple description of H* (G(2, 2i -3); Z(2)) and H* (G(2, 2i -4); Z(2)) and use these results to give a simple proof of some non-immersion results of Oproui.
引用
收藏
页码:123 / 136
页数:14
相关论文
共 50 条
  • [31] Groebner bases of the ideal of a space curve
    Berry, TG
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 148 (01) : 17 - 27
  • [32] LFSR Identification using Groebner Bases
    Vijayakumaran, Saravanan
    2016 TWENTY SECOND NATIONAL CONFERENCE ON COMMUNICATION (NCC), 2016,
  • [33] Two applications of noncommutative Groebner bases
    Huishi L.
    Yuchun W.
    Jingliang Z.
    Annali dell’Università’ di Ferrara, 1999, 45 (1): : 1 - 24
  • [34] An Algorithm for Computing Relative Groebner Bases
    Huang Guanli
    Meng, Zhou
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MECHATRONICS, CONTROL AND ELECTRONIC ENGINEERING, 2014, 113 : 195 - 198
  • [35] Non-immersion Theorems for the Grassmann Manifolds 2, n and G2, n
    唐梓洲
    Chinese Science Bulletin, 1993, (05) : 353 - 355
  • [36] Clifford与Grassmann代数的理想的Groebner基
    刘金旺
    申建华
    肖跃龙
    数学物理学报, 2005, (02) : 171 - 175
  • [37] The Geometry of Grassmann Manifolds as Submanifolds
    陈维桓
    数学进展, 1987, (03) : 334 - 335
  • [38] RATIONAL AUTOMORPHISMS OF GRASSMANN MANIFOLDS
    BREWSTER, S
    HOMER, W
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (01) : 181 - 183
  • [39] MINIMALITY OF GEODESICS IN GRASSMANN MANIFOLDS
    PORTA, H
    RECHT, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 100 (03) : 464 - 466
  • [40] AN APPLICATION OF PERSISTENT HOMOLOGY ON GRASSMANN MANIFOLDS FOR THE DETECTION OF SIGNALS IN HYPERSPECTRAL IMAGERY
    Chepushtanova, Sofya
    Kirby, Michael
    Peterson, Chris
    Ziegelmeier, Lori
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 449 - 452