Prostate cancer diagnosis using quantitative phase imaging and machine learning

被引:4
|
作者
Nguyen, Tan H. [1 ,2 ]
Sridharan, Shamira [1 ]
Marcias, Virgilia [3 ]
Balla, Andre K. [3 ]
Do, Minh N. [2 ]
Popescu, Gabriel [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Beckman Inst Adv Sci & Technol, Quantitat Phase Imaging Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab, Computat Imaging Grp, Urbana, IL 61801 USA
[3] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA
来源
QUANTITATIVE PHASE IMAGING | 2015年 / 9336卷
关键词
automatic diagnosis; Quantitative Phase Imaging; texton analysis; prostate cancer; MICROSCOPY;
D O I
10.1117/12.2080321
中图分类号
TH742 [显微镜];
学科分类号
摘要
We report, for the first time, the use of Quantitative Phase Imaging (QPI) images to perform automatic prostate cancer diagnosis. A machine learning algorithm is implemented to learn textural behaviors of prostate samples imaged under QPI and produce labeled maps of different regions for testing biopsies (e.g. gland, stroma, lumen etc.). From these maps, morphological and textural features are calculated to predict outcomes of the testing samples. Current performance is reported on a dataset of more than 300 cores of various diagnosis results.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Accuracy of machine learning models using ultrasound images in prostate cancer diagnosis: a systematic review
    Sihotang, Retta Catherina
    Agustino, Claudio
    Huang, Ficky
    Parikesit, Dyandra
    Rahman, Fakhri
    Hamid, Agus Rizal Ardy Hariandy
    MEDICAL JOURNAL OF INDONESIA, 2023, 32 (02) : 112 - 121
  • [22] Brain Cancer Diagnosis and Enhancing Prognosis with Machine Learning and Imaging
    Miao, K. H.
    Miao, J. H.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2024, 72 (01)
  • [23] Chemical imaging coupled to machine learning for digital cancer diagnosis
    Mitttal, Shachi
    Yeh, Kevin
    Balla, Andre
    Bhargava, Rohit
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [24] Machine learning techniques on homological persistence features for prostate cancer diagnosis
    Rammal, Abbas
    Assaf, Rabih
    Goupil, Alban
    Kacim, Mohammad
    Vrabie, Valeriu
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [25] Machine learning techniques on homological persistence features for prostate cancer diagnosis
    Abbas Rammal
    Rabih Assaf
    Alban Goupil
    Mohammad Kacim
    Valeriu Vrabie
    BMC Bioinformatics, 23
  • [26] Quantitative Imaging in Radiomics and Machine Learning
    Tilkin, M.
    Mayo, C.
    Deasy, J.
    Gillies, R.
    Erickson, B.
    MEDICAL PHYSICS, 2018, 45 (06) : E540 - E540
  • [27] Blood cancer diagnosis using hyperspectral imaging combined with the forward searching method and machine learning
    Chen, Riheng
    Luo, Ting
    Nie, Junfei
    Chu, Yanwu
    ANALYTICAL METHODS, 2023, 15 (31) : 3885 - 3892
  • [28] Diagnosis of skin cancer using machine learning techniques
    Murugan, A.
    Nair, S. Anu H.
    Preethi, A. Angelin Peace
    Kumar, K. P. Sanal
    MICROPROCESSORS AND MICROSYSTEMS, 2021, 81
  • [29] Using Machine Learning and miRNA for the Diagnosis of Esophageal Cancer
    Aravind, Vishnu A.
    Kouznetsova, Valentina L.
    Kesari, Santosh
    Tsigelny, Igor F.
    JOURNAL OF APPLIED LABORATORY MEDICINE, 2024, 9 (04): : 684 - 695
  • [30] Using Machine Learning Algorithms for Breast Cancer Diagnosis
    El-Lamey, Mazen Mobtasem
    Eid, Mohab Mohammed
    Gamal, Muhammad
    Bishady, Nour-Elhoda Mohamed
    Mohamed, Ali Wagdy
    INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2021, 12 (04) : 117 - 154