GAMMA CONVERGENCE AND ASYMPTOTIC BEHAVIOR FOR EIGENVALUES OF NONLOCAL PROBLEMS

被引:5
|
作者
Fernandez Bonder, Julian [1 ]
Silva, Analia [2 ]
Spedaletti, Juan F. [2 ]
机构
[1] Univ Buenos Aires, FCEN, Dept Matemat, Inst Matemat Luis A Santalo IMAS,CONICET, Ciudad Univ,Pabellon 1,C1428EGA,Av Cantilo S-N, Buenos Aires, DF, Argentina
[2] Inst Matemat Aplicada San Luis IMASL, Ejercito los Andes 950,D5700HHW, San Luis, Argentina
关键词
Fractional eigenvalues; stability of nonlinear eigenvalues; fractional p-laplacian problems; PERIODIC HOMOGENIZATION;
D O I
10.3934/dcds.2020355
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze the asymptotic behavior of several fractional eigenvalue problems by means of Gamma-convergence methods. This method allows us to treat different eigenvalue problems under a unified framework. We are able to recover some known results for the behavior of the eigenvalues of the p-fractional laplacian when the fractional parameter s goes to 1, and to extend some known results for the behavior of the same eigenvalue problem when p goes to infinity. Finally we analyze other eigenvalue problems not previously covered in the literature.
引用
收藏
页码:2125 / 2140
页数:16
相关论文
共 50 条