GAMMA CONVERGENCE AND ASYMPTOTIC BEHAVIOR FOR EIGENVALUES OF NONLOCAL PROBLEMS

被引:5
|
作者
Fernandez Bonder, Julian [1 ]
Silva, Analia [2 ]
Spedaletti, Juan F. [2 ]
机构
[1] Univ Buenos Aires, FCEN, Dept Matemat, Inst Matemat Luis A Santalo IMAS,CONICET, Ciudad Univ,Pabellon 1,C1428EGA,Av Cantilo S-N, Buenos Aires, DF, Argentina
[2] Inst Matemat Aplicada San Luis IMASL, Ejercito los Andes 950,D5700HHW, San Luis, Argentina
关键词
Fractional eigenvalues; stability of nonlinear eigenvalues; fractional p-laplacian problems; PERIODIC HOMOGENIZATION;
D O I
10.3934/dcds.2020355
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze the asymptotic behavior of several fractional eigenvalue problems by means of Gamma-convergence methods. This method allows us to treat different eigenvalue problems under a unified framework. We are able to recover some known results for the behavior of the eigenvalues of the p-fractional laplacian when the fractional parameter s goes to 1, and to extend some known results for the behavior of the same eigenvalue problem when p goes to infinity. Finally we analyze other eigenvalue problems not previously covered in the literature.
引用
收藏
页码:2125 / 2140
页数:16
相关论文
共 50 条
  • [1] Asymptotic behavior for a class of nonlocal nonautonomous problems
    Bezerra, Flank D. M.
    da Silva, Severino H.
    Pereira, Antonio L.
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (11) : 2063 - 2079
  • [2] ASYMPTOTIC BEHAVIOR OF SOME NONLOCAL PARABOLIC PROBLEMS
    Siegwart, Martin
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2006, 11 (02) : 167 - 199
  • [3] Asymptotic behavior of the generalized principal eigenvalues of nonlocal dispersal operators and applications
    Shen, Wenxian
    Sun, Jian-Wen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 413 : 288 - 328
  • [4] On the asymptotic behavior of the principal eigenvalues of some elliptic problems
    Tomas Godoy
    Jean-Pierre Gossez
    Sofia Paczka
    Annali di Matematica Pura ed Applicata, 2010, 189 : 497 - 521
  • [5] On the asymptotic behavior of the principal eigenvalues of some elliptic problems
    Godoy, Tomas
    Gossez, Jean-Pierre
    Paczka, Sofia
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (03) : 497 - 521
  • [6] ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR SOME NONLOCAL DIFFUSION PROBLEMS
    Boni, Theodore K.
    N'Gohisse, Firmin K.
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2008, 35 : 21 - 31
  • [7] ASYMPTOTIC BEHAVIOR OF SOLUTION BRANCHES OF NONLOCAL BOUNDARY VALUE PROBLEMS
    徐西安
    秦宝侠
    王震
    Acta Mathematica Scientia, 2020, 40 (02) : 341 - 354
  • [8] Asymptotic Behavior of Solution Branches of Nonlocal Boundary Value Problems
    Xu, Xian
    Qin, Baoxia
    Wang, Zhen
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (02) : 341 - 354
  • [9] Asymptotic Behavior of Solution Branches of Nonlocal Boundary Value Problems
    Xian Xu
    Baoxia Qin
    Zhen Wang
    Acta Mathematica Scientia, 2020, 40 : 341 - 354
  • [10] ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO PARABOLIC PROBLEMS WITH NONLINEAR NONLOCAL TERMS
    Loayza, Miguel
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,